. 24/7 Space News .
IRON AND ICE
Crater that killed the dinosaurs reveals how broken rocks can flow like liquid
by Staff Writers
West Lafayette IN (SPX) Oct 25, 2018

file illustration only

Sixty-six million years ago, an asteroid the size of a small city smashed into the earth. This impact, the one that would lead to the end of the dinosaurs, left a scar several miles underground and more than 115 miles wide.

Chicxulub, which lies underneath the Yucatan Peninsula of Mexico, is the best-preserved large impact crater on Earth, although it's buried underneath a half mile of rocks. It's also the only crater on the planet with a mountainous ring of smashed rocks inside its outer rim, called a peak ring. How these features form has long been debated, but a new study in Nature shows they're a product of extremely strong vibrations in the Earth that let rock flow like liquid for a crucial few minutes after the impact.

When an asteroid crashes into the earth, it leaves a bowl-shaped pit, just like you'd expect. But it doesn't just leave a dent. If the asteroid is big enough, the resulting crater can be more than 20 miles deep, at which point it becomes unstable and collapses.

"For a while, the broken rock behaves as a fluid," said Jay Melosh, a professor of earth, atmospheric and planetary sciences at Purdue University. "There have been a lot of theories proposed about what mechanism allows this fluidization to happen, and now we know it's really strong vibrations shaking the rock constantly enough to allow it to flow."

This mechanism, known as "acoustic fluidization," is the process that allows the ring of mountains in the crater's center to rise within minutes of the asteroid's strike. (This idea was first proposed by Melosh in 1979). Craters are essentially the same on all the terrestrial planets (Earth, Mercury, Venus, Mars and our moon), but they're hard to study in space for obvious reasons: We can't look at them with the same detail we can on Earth.

The Chicxulub crater isn't easily accessible by traditional standards either; it's been buried throughout the last 66 million years. So the International Ocean Discovery Program (a group within the International Continental Scientific Drilling Program), did the only thing they could - they dug. The team drilled a core roughly six inches in diameter and a mile into the Earth, collecting rock that was shattered and partly melted by the impact that wiped out the dinosaurs.

In examining fracture zones and patterns in the core, the international research team found an evolution in the vibration sequence that would allow debris to flow.

"These findings help us understand how impact craters collapse and how large masses of rock behave in a fluid-like manner in other circumstances, such as landslides and earthquakes," Melosh said. "Towns have been wiped out by enormous landslides, where people thought they were safe but then discovered that rock will flow like liquid when some disturbance sets a big enough mass in motion."

The extinction of the dinosaurs itself was probably not directly affected by the crater's internal collapse - other, external effects of the impact did them in, Melosh said. Regardless, it's important to understand the consequences of a large asteroid strike on Earth. Because cratering is the same on all the terrestrial planets, these findings also validate the mechanics of impacts everywhere in the solar system.

Research paper


Related Links
Purdue University
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
The threat of Centaurs for the Earth
Vienna, Austria (SPX) Oct 10, 2018
The astrophysicists Mattia Galiazzo and Rudolf Dvorak from the University of Vienna, in collaboration with Elizabeth A. Silber (Brown University, USA) investigated the long-term path development of Centaurs (solar system minor bodies which originally have orbits between Jupiter and Neptune). These researchers have estimated the number of close encounters and impacts with the terrestrial planets after the so-called Late Heavy Bombardment (about 3.8 billion years ago) as well as the possible sizes o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Plant hormone makes space farming a possibility

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

IRON AND ICE
US astronaut Hague 'amazed' by Russian rescue team's work after Soyuz failure

Taxi tests for Paul Allen's Stratolaunch successfully reach 90 mph

Russian investigators identify responsible for failed Soyuz launch

Launches of Russian Rokot-2 rocket may begin again in 2021

IRON AND ICE
Minerals of the world, unite

Mars likely to have enough oxygen to support life: study

The claw game on Mars: NASA InSight plays to win

Scientists to debate landing site for next Mars rover

IRON AND ICE
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

IRON AND ICE
Space industry entropy

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

European Space Talks: we need more space!

Source reveals timing of OneWeb satellites' debut launch on Soyuz

IRON AND ICE
3D bioprinting technique could create artificial blood vessels, organ tissue

Orbit Logic's scheduling software selected for NASA satellite servicing mission

Penetrating the soil's surface with radar

Air Force contract Ball Aerospace for laser research

IRON AND ICE
Plan developed to characterize and identify ocean worlds

Discovering a previously unknown role for a source of magnetic fields

Double dust ring test could spot migrating planets

Algorithm takes search for habitable planets to the next level

IRON AND ICE
Europa plume sites lack expected heat signatures

NASA's Juno Mission Detects Jupiter Wave Trains

ALMA maps temperature of Jupiter's icy moon Europa

Icy moon of Jupiter, Ganymede, shows evidence of past strike-slip faulting









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.