. | . |
Cracking the secrets of an emerging branch of physics by Leda Zimmerman for MIT News Boston MA (SPX) Nov 22, 2020
In a new realm of materials, PhD student Thanh Nguyen uses neutrons to hunt for exotic properties that could power real-world applications. Thanh Nguyen is in the habit of breaking down barriers. Take languages, for instance: Nguyen, a third-year doctoral candidate in nuclear science and engineering (NSE), wanted "to connect with other people and cultures" for his work and social life, he says, so he learned Vietnamese, French, German, and Russian, and is now taking an MIT course in Mandarin. But this drive to push past obstacles really comes to the fore in his research, where Nguyen is trying to crack the secrets of a new and burgeoning branch of physics. "My dissertation focuses on neutron scattering on topological semimetals, which were only experimentally discovered in 2015," he says. "They have very special properties, but because they are so novel, there's a lot that's unknown, and neutrons offer a unique perspective to probe their properties at a new level of clarity." Topological materials don't fit neatly into conventional categories of substances found in everyday life. They were first materialized in the 1980s, but only became practical in the mid-2000s with deepened understanding of topology, which concerns itself with geometric objects whose properties remain the same even when the objects undergo extreme deformation. Researchers experimentally discovered topological materials even more recently, using the tools of quantum physics. Within this domain, topological semimetals, which share qualities of both metals and semiconductors, are of special interest to Nguyen. "They offer high levels of thermal and electric conductivity, and inherent robustness, which makes them very promising for applications in microelectronics, energy conversions, and quantum computing," he says. Intrigued by the possibilities that might emerge from such "unconventional physics," Nguyen is pursuing two related but distinct areas of research: "On the one hand, I'm trying to identify and then synthesize new, robust topological semimetals, and on the other, I want to detect fundamental new physics with neutrons and further design new devices."
On a fast research track "The summer, before I joined the group, Mingda sent me on a trip to Argonne National Laboratory for a very fun experiment that used synchrotron X-ray scattering to characterize topological materials," recalls Nguyen. "Learning the techniques got me fascinated in the field, and I started to see my future." During his first two years of graduate school, he participated in four studies, serving as a lead author in three journal papers. In one notable project, described earlier this year in Physical Review Letters, Nguyen and fellow Quantum Matter Group researchers demonstrated, through experiments conducted at three national laboratories, unexpected phenomena involving the way electrons move through a topological semimetal, tantalum phosphide (TaP). "These materials inherently withstand perturbations such as heat and disorders, and can conduct electricity with a level of robustness," says Nguyen. "With robust properties like this, certain materials can conductivity electricity better than best metals, and in some circumstances superconductors - which is an improvement over current generation materials." This discovery opens the door to topological quantum computing. Current quantum computing systems, where the elemental units of calculation are qubits that perform superfast calculations, require superconducting materials that only function in extremely cold conditions. Fluctuations in heat can throw one of these systems out of whack. "The properties inherent to materials such as TaP could form the basis of future qubits," says Nguyen. He envisions synthesizing TaP and other topological semimetals - a process involving the delicate cultivation of these crystalline structures - and then characterizing their structural and excitational properties with the help of neutron and X-ray beam technology, which probe these materials at the atomic level. This would enable him to identify and deploy the right materials for specific applications. "My goal is to create programmable artificial structured topological materials, which can directly be applied as a quantum computer," says Nguyen. "With infinitely better heat management, these quantum computing systems and devices could prove to be incredibly energy efficient."
Physics for the environment At McGill University, he majored in physics. "I became fascinated by problems in the field, but I also felt I could eventually apply what I learned to fulfill my goals of protecting the environment," he says. In both classes and research, Nguyen immersed himself in different domains of physics. He worked for two years in a high-energy physics lab making detectors for neutrinos, part of a much larger collaboration seeking to verify the Standard Model. In the fall of his senior year at McGill, Nguyen's interest gravitated toward condensed matter studies. "I really enjoyed the interplay between physics and chemistry in this area, and especially liked exploring questions in superconductivity, which seemed to have many important applications," he says. That spring, seeking to add useful skills to his research repertoire, he worked at Ontario's Chalk River Laboratories, where he learned to characterize materials using neutron spectroscopes and other tools. These academic and practical experiences served to propel Nguyen toward his current course of graduate study. "Mingda Li proposed an interesting research plan, and although I didn't know much about topological materials, I knew they had recently been discovered, and I was excited to enter the field," he says.
Man with a plan With the right materials in hand, he hopes to develop "a qubit structure that isn't so vulnerable to perturbations, quickly advancing the field of quantum computing so that calculations that now take years might require just minutes or seconds," he says. "Vastly higher computational speeds could have enormous impacts on problems like climate, or health, or finance that have important ramifications for society." If his research on topological materials "benefits the planet or improves how people live," says Nguyen, "I would be totally happy."
Smart concrete could pave the way for high-tech, cost-effective roads West Lafayette OM (SPX) Nov 13, 2020 Every day, Americans travel on roads, bridges and highways without considering the safety or reliability of these structures. Yet much of the transportation infrastructure in the U.S. is outdated, deteriorating and badly in need of repair. Of the 614,387 bridges in the U.S., for example, 39% are older than their designed lifetimes, while nearly 10% are structurally deficient, meaning they could begin to break down faster or, worse, be vulnerable to catastrophic failure. The cost to repair an ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |