24/7 Space News
SPACE MEDICINE
Counteracting Bone And Muscle Loss In Microgravity
ESA (European Space Agency) astronaut Alexander Gerst gets a workout on the Advanced Resistive Exercise Device (ARED).
Counteracting Bone And Muscle Loss In Microgravity
by Staff Writers
Washington DC (SPX) Dec 04, 2023

In microgravity, without the continuous load of Earth's gravity, the tissues that make up bones reshape themselves. Bone cells readjust their behaviors-the cells that build new bone slow down, while the cells that break down old or damaged bone tissue keep operating at their normal pace so that breakdown outpaces growth, producing weaker and more brittle bones. For every month in space, astronauts' weight-bearing bones become roughly 1% less dense if they don't take precautions to counter this loss. Muscles, usually activated by simply moving around on Earth, also weaken because they no longer need to work as hard. This loss of bone and muscle is called atrophy.

Atrophy has serious implications for astronaut health. On Earth, muscle and bone loss or atrophy also occur from normal aging, sedentary lifestyles, and illnesses. This may cause serious health issues from injuries due to falls, osteoporosis, or many other medical problems.

While researchers understand broad causes of atrophy, they continue to investigate the fundamental mechanisms and contributing factors of microgravity-induced muscle and bone atrophy. Much research focuses on determining the right combination of diet, exercise, and medication to keep astronauts healthy during missions and when they return to Earth or set foot on the Moon or Mars.

Exercise and Forces
Each astronaut aboard the space station engages the muscles, bones, and other connective tissues that comprise their musculoskeletal systems using Earth-like exercise regimens. Crews exercise for an average of two hours a day.

Astronauts have biked on stationary bicycles and run on treadmills in space for decades. One of the first missions on the space station flew TVIS, a treadmill with a harness to keep the user tethered to the machine and add some gravity-like force. A current piece of equipment called ARED allows astronauts to mimic weightlifting in microgravity.

Unfortunately, these machines are too large to bring aboard a spacecraft for long duration space flight where room is at a premium. So scientists are curious: Could exercises using minimal or no equipment could provide adequate physical activity while taking up less room?

One study in particular aims to find out. For the Zero T2 experiment, some astronauts do not use the treadmill and instead simply perform aerobic and resistance exercises. Researchers plan to compare their muscle performance and recovery to their crewmates who did use the treadmill.

The motivation to exercise is a major hurdle both on Earth and on the space station. Two hours or more of exercise a day is a large chunk of time! VR for Exercise focuses on developing a virtual reality environment astronauts can pedal through while on the station's exercise bicycle. It's more than just a different view-creating an immersive experience helps astronauts enjoy their time exercising.

In addition to testing the exercise regime itself, researchers want to understand how the body experiences exercise in microgravity. Full-body exercise affects the entire musculoskeletal system. ARED Kinematics analyzes how muscle strain, bone stress, and other internal factors affect the body while exercising in microgravity. Measuring the body during space workouts can help scientists understand how astronauts need to adapt exercises in microgravity to preserve and optimize their health during long duration spaceflight missions.

Researchers found that pre-flight exercise training improves performance on station, just as pre-season training helps athletes in later competition. The investigation aims to determine optimal exercise programs to prepare astronauts before a mission, limit the effects of microgravity during a mission, and enable safe and rapid recovery postflight.

The search for treatments for bone atrophy in space overlaps with research on bone loss associated with osteoporosis on Earth. Some experiments, like Vertebral Strength, capture detailed scans of astronauts' bones and muscles supporting the vertebral column before and after flight, providing researchers with information about overall musculoskeletal strength.

Drugs used to prevent bone loss on Earth, such as myostatin inhibitors, also may successfully prevent bone and muscle loss in both astronauts and animal models in space. Rodent Research 19 (RR-19) tested this drug during spaceflight. Developing drugs to treat bone loss could benefit people on Earth as well as provide countermeasures for those on long-duration space missions.

Tissue chips are small devices that imitate complex functions of specific tissues and organs. Rather than bringing a whole organ to study in space, researchers can send a small sample in a handheld device. One tissue chip experiment, Human Muscle-on-Chip, used a 3D model of muscle fibers created from muscle cells of young and older adults to study muscle function changes in microgravity. Electrical pulses cause the tissue to contract, just like the muscles in our bodies when we use them. Researchers found decreased expression of genes related to muscle growth and metabolism in muscle cells exposed to space, with differences based on the age of the individuals that the tissue samples came from.

Understanding how to prevent and treat muscle atrophy and bone loss is particularly important as NASA plans missions to the Moon and Mars. Once they arrive, astronauts may need to perform strenuous activity in partial gravity after a long time in near weightlessness.

CIPHER is an integrated experiment measuring psychological and physiological changes-including bone and muscle loss - in crew members on missions ranging in length from a few weeks to one year. As NASA sets goals or longer missions deeper into space, scientists want to know: Do long missions change astronauts' physical bodies more than shorter missions? Do changes to certain systems plateau after a certain amount of time in space? Do any changes feed back to affect different biological systems? NASA needs such data to best prepare astronauts to achieve agency exploration goals.

Through CIPHER, NASA can conduct the same research over missions of different durations. This allows scientists to extrapolate to multi-year missions, such as a three-year round trip to Mars. Findings could be key to developing protective strategies and safeguarding crew members for exploration missions to the Moon and Mars.

Studying bone and muscle loss aboard the space station is advancing the development of strategies that keep space travelers safe and treatments for people on Earth with disease-related and age-related bone and muscle atrophy.

Search this database of scientific experiments to learn more about those mentioned above: Space Station Research Explorer

Related Links
Space Station Research Explorer
Space Medicine Technology and Systems

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SPACE MEDICINE
CubeSat launch platform by Vector Space Biosciences will boost space biotech
Los Angeles CA (SPX) Nov 22, 2023
In a new collaboration, Vector Space Biosciences, Inc. has joined forces with Oracle and NVIDIA to introduce a novel small satellite launch platform for CubeSat and NanoSats, that have been specifically designed to cater to the needs of the biotechnology and pharmaceutical sectors. This innovative platform represents a combination of several cutting-edge technologies, including a biosciences lab, a CubeSat lab, and a language modeling/AI lab. It embodies a blend of highly targeted and large biolog ... read more

SPACE MEDICINE
Axiom Space Chooses AWS to Power IT Infrastructure for Commercial Space Station

Was going to space a good idea

Sierra Space's Shooting Star Module Begins Rigorous Testing at NASA Facility

Russian Progress 86 spacecraft lifts off with supplies for ISS

SPACE MEDICINE
NASA Continues Progress on Artemis III Rocket Adapter with Key Joint Installation

NASA Tests In-Flight Capability of Artemis Moon Rocket Engine

Sidus Space and Bechtel join forces for Artemis Mobile Launcher 2

NASA, small companies eye new cargo delivery, heat shield technologies

SPACE MEDICINE
Mapping Mars: Deep Learning Could Help Identify Jezero Crater Landing Site

MAHLI Marathon: Sols 4025-4027

Should I Stay or Should I Go Now: Sols 4028-4029

Farewell, Solar Conjunction 2023: Sols 4023-4024

SPACE MEDICINE
CAS Space expands into Guangdong with new rocket engine testing complex

China's Lunar Samples on Display in Macao to Inspire Future Explorers

China Manned Space Agency Delegation Highlights SARs' Role in Space Program

Wenchang Set to Become China's Premier Commercial Space Launch Hub by Next Year

SPACE MEDICINE
Embry-Riddle's Innovative Mission Control Lab prepares students for booming space sector

Ovzon and SSC close to sealing satellite communication contract worth $10M

A major boost for space skills and research in North East England

GalaxySpace to boost mobile broadband with new-gen satellite technology

SPACE MEDICINE
The Rise of the Virtual Mission

Georgia State professor granted $5 million to identify and characterize objects in space

Lift-off for EIRSAT-1, Ireland's first ever satellite

CityU develops universal metasurface antenna, advancing 6G communications

SPACE MEDICINE
Ariel moves from drawing board to construction phase

Webb study reveals rocky planets can form in extreme environments

Can signs of life be detected from Saturn's frigid moon?

Shedding light on the synthesis of sugars before the origin of life

SPACE MEDICINE
Unwrapping Uranus and its icy moon secrets

Juice burns hard towards first-ever Earth-Moon flyby

Fall into an ice giant's atmosphere

Juno finds Jupiter's winds penetrate in cylindrical layers

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.