. 24/7 Space News .
STELLAR CHEMISTRY
Cosmic Dust Demystified by British Researchers
by Staff Writers
Leeds, UK (SPX) Sep 28, 2016


File image.

The solar system is a dusty environment, with trillions of cosmic dust particles left behind by comets and asteroids that orbit the sun. All this dust forms a relatively dense cloud through which the Earth travels, sweeping up the interplanetary dust particles very effectively.

Besides providing substantive information about the atmospheres of other planets, these particles can impact radio communications, climate and even serve as fertilizer for phytoplankton in the oceans. Studying them can help answer questions like "Is there (or was there) extraterrestrial life?" and "How did life start on Earth?," and unlock unexpected practical solutions for air travel.

A team of researchers at the University of Leeds in Great Britain led by John Plane, professor of atmospheric chemistry, has developed a new experimental Meteoric Ablation Simulator (MASI) that can help answer questions about cosmic dust and how it impacts Earth and everything on it.

The study of the evaporation of cosmic dust particles in the upper atmosphere has, until now, relied heavily on theoretical calculations. Evidence provided by field radar and optical observations of meteoroids is contradictory in relation to the height where each of the metals in the particles will ablate as they fall through the atmosphere.

The model developed in Leeds is the only model capable of simulating the evaporation of each important elemental constituent (silicon, iron, magnesium, sodium, calcium) from cosmic dust particles.

To put the model calculations on a solid experimental basis and settle the question about when each metal ablates, they designed the MASI, where particles with similar composition to cosmic dust are flash-heated to simulate atmospheric entry while simultaneously monitoring the evaporating metals.

"Only relatively recent advances in computing hardware and software have allowed us to address the precise timing and substantial computational requirements needed for MASI," said David Bones, a member of the Leeds research team working on the project.

"During a particle entry simulation that lasts about 12 seconds, we want to take 6,000 measurements while we are rapidly changing the temperature of the filament to flash-heat the particle with real-time feedback."

The Meteoric Ablation Simulator is the first ablation experiment capable of simulating detailed mass, velocity and entry angle-specific temperature profiles while simultaneously tracking the resulting gas-phase ablation products. This results in elemental atmospheric entry yields that consider the mass and size distribution of interplanetary dust particles.

So what are we learning from MASI?
While the measurements for sodium and iron ablation agreed reasonably well with the model, the calcium ablation measurements did not, suggesting that we need a more sophisticated ablation model that can take into account factors like the particles breaking up into smaller bits in the atmosphere and the fact that these particles are not uniform in composition but are aggregates of different types of minerals stuck together.

Perhaps surprisingly, understanding interplanetary dust particles and using tools like the Meteoric Ablation Simulator have value beyond the obvious. Besides providing a better understanding of the upper atmosphere and the metal layers present there, the simulator offers other utility from industrial applications to understanding the formation of planets.

"An example of an area where small particles can be rapidly heated is jet turbines," Bones said. "By better understanding the melting and ablation processes we can design ash-resistant jet engines that could fly without disruption through an ash cloud similar to that created when the volcano Eyjafjallajokull erupted in 2010."

Research paper: " Novel Instrument to Measure Differential Ablation of Meteorite Samples and Proxies: The Meteoric Ablation Simulator (MASI)," D. L. Bones, J. C. Gomez Martin, C. J. Empson, J. D. Carrillo Sanchez, A. D. James, T. P. Conroy and J. M. C. Plane, 2016 Sept. 27, Review of Scientific Instruments


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Leeds
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
ALMA uncovers secrets of Giant Space Blob
Garching, Germany (SPX) Sep 22, 2016
An international team using ALMA, along with ESO's Very Large Telescope and other telescopes, has discovered the true nature of a rare object in the distant universe called a Lyman-alpha blob. Up to now astronomers did not understand what made these huge clouds of gas shine so brightly, but ALMA has now seen two galaxies at the heart of one of these objects and they are undergoing a frenzy ... read more


STELLAR CHEMISTRY
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

STELLAR CHEMISTRY
NASA iTech Fosters Technology Needed for Journey to Mars

Pacamor Kubar Bearings awarded contract to support Mars 2020 Mission

Rover Makes Its Way to 'Spirit Mound,'

A Mixed-reality Trip to Mars

STELLAR CHEMISTRY
Feeding a Mars mission: the challenges of growing plants in space

Yoyager's Golden Record not just for aliens anymore

Indian Space Organization Gears Up for First Multi-Orbit Mission

California dreamin' for Chinese investors in US

STELLAR CHEMISTRY
Astronauts given comfort upgrade

Rocket maker aims high with lofty output targets

Batch production of Long March 5 underway

Scientific experiment apparatuses on Tiangong-2 put into operation

STELLAR CHEMISTRY
NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

STELLAR CHEMISTRY
Launch of Atlas V Rocket With WorldView-4 Satellite Postponed Till October

Rocket agreement marks countdown to New Zealand's first space launch

Parallel launch preparations put Ariane 5 on track for next launch

Vega orbits "eyes in the skies" on its latest success

STELLAR CHEMISTRY
Pluto's heart sheds light on a possible buried ocean

Hubble Finds Planet Orbiting Pair of Stars

Stellar activity can mimic misaligned exoplanets

ALMA locates possible birth site of icy giant planet

STELLAR CHEMISTRY
UK increases investment in Magna Parva in-space manufacturing tech

Tardigrades use protective protein to shield their DNA from radiation

'Virtual orchestra' hits high notes in London

Study investigates steel-eating microbes on ship hulls









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.