. 24/7 Space News .
EARTH OBSERVATION
Copernicus LSTM Expansion mission helping climate change adaptation
by Staff Writers
Madrid, Spain (SPX) Nov 08, 2022

The Land Surface Temperature Monitoring (LSTM) programme is on track focusing on farming and food security, irrigation and water scarcity, and urban heat islands and energy efficiency.

The Land Surface Temperature Monitoring (LSTM) programme led by Airbus has successfully passed the Preliminary Design Review (PDR). The approval of this milestone with ESA confirms that the satellite design is compliant with all mission requirements ensuring that mission objectives and user needs will be met.

LSTM is part of the Copernicus programme established to fulfil the need among European policy-makers to access accurate and timely information services to better manage the environment, understand and mitigate the effects of climate change and ensure civil security. LSTM addresses three key climate elements of concern: farming and food security, irrigation and water scarcity, and urban heat islands and energy efficiency.

"By measuring global temperature exchanges, LSTM will help shed light on how to adapt to climate change, particularly in support of agriculture management services. It is the first Copernicus mission awarded to a Spanish company and the third ESA mission to be primed by Airbus, after CHEOPS and Ingenio," said Luis Guerra, responsible for Airbus Space Systems in Spain. "The programme development is on schedule thanks to a huge team effort and we are on track for launch of the first of the two satellites in 2028."

The main objective of LSTM is to enable global monitoring of the evapotranspiration (ET) rate at field scale by capturing the variability of Land Surface Temperature (LST), allowing more robust estimates of field water productivity. This is a key parameter which can be used to improve water resource management in agriculture to secure food production. Water productivity and irrigation efficiency are difficult to measure in situ at scale, this is why Earth observation satellites are needed to quantify these processes. Water stress in plants can be determined with thermal infrared (TIR) observations, days and even weeks before it becomes noticeable in visible and near infrared observations. This information can help farmers to use natural resources more effectively in a more sustainable manner.

As a complementary objective, thermal observations offer a wide range of additional services by monitoring drought and land degradation, urban heat islands and excess heat generation in city areas (electric power stations, warnings to older and physically weaker individuals, smart urban developments), cryosphere health (permafrost, glacier lakes), coastlines, coral reefs and inland water management and natural hazards (fires, volcanoes).

As a complementary objective, thermal observations offer a wide range of additional services by monitoring drought and land degradation, urban heat islands and excess heat generation in city areas (power stages, warnings to older and physically weaker individuals, smart urban developments), cryosphere health (permafrost, glacier lakes), coastlines, coral reefs and inland water management and natural hazards (fires, volcanoes).

LSTM is one of the six Copernicus Expansion Sentinel missions being developed by the European Space Agency (ESA) and the European Commission. The contract, worth euro 390 million, was signed in November 2020. In its role of mission prime, Airbus Defence and Space in Spain is responsible for the satellite design, integration and test, up to the point of in-orbit commissioning and transfer to operations. Airbus leads an industrial consortium of 87 subcontractors on the programme across 19 European countries.

The mission includes two identical satellites, each one with a mass of 1,300 kg and a power generation capacity of 1,600 Wh. Both satellites will fly in a Low Earth Orbit (LEO) constellation at 651 km with local observation time at 13:00 over Europe, which corresponds to the highest stress time for crops. The minimum lifetime of each satellite is seven years but the satellite's components are designed to last for 12 years, potentially operating up to and beyond 2040.

The Toulouse site of Airbus in France is responsible for the instrument design, integration and testing up to delivery to the satellite prime. The state-of-the-art thermal infrared instrument is being developed in Toulouse and will be the first spaceborne instrument to implement the thermal infrared-5 band at 12 microns enabling provision of 20 times greater spatial and temporal resolution (400 pixels of 50x50m fit into the 1000x1000m pixels of previous missions) and a revisit time of just two days at the equator.

The satellites will be compatible with the European launchers Vega-C (nominal) and Ariane 6 (backup) with the first launch planned for 2028 and the second for 2030.

Overall, Airbus is responsible for the spacecraft or payload on three out of six new generation Copernicus Environment and Earth observation missions: LSTM, CRISTAL and Rose-L, and is providing critical equipment to all six.

The Copernicus Sentinels are a fleet of dedicated EU-owned satellites, designed to deliver the wealth of data and imagery that are central to the European Union's Copernicus environmental programme. The European Space Agency is in charge of the space component, responsible for developing the family of Copernicus Sentinel satellites on behalf of the European Union and ensuring the flow of data for the Copernicus services, while the operations of the Copernicus Sentinels have been entrusted to ESA and EUMETSAT, the European Organisation for the Exploitation of Meteorological Satellites. Six new missions were selected in 2020 to join the fleet of Copernicus Sentinels and expand the current capabilities.


Related Links
LSTM Copernicus
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Alpha Data powers NASA's climate change mineral dust detector on Space Station
Edinburgh UK (SPX) Nov 04, 2022
Critical elements of a new instrument attached to the International Space Station (ISS) this summer, and designed to examine the chemical composition of atmospheric mineral dust, is powered by hardware from high-performance electronics company Alpha Data. Data gathered by the NASA instrument - called the Earth Surface Mineral Dust Source Investigation (EMIT) - as the Space Station orbits Earth, will help scientists understand more about how deserts and arid regions affect climate. Flown to t ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Resupply mission for NASA carries scientific experiments to ISS

NASA Moon rocket launch delayed again, this time by storm

NASA updates Commercial Crew Flight Manifest to Space Station

One Cygnus solar array deployed so far

EARTH OBSERVATION
Subtropical Storm Nicole delays SpaceX launch

Rocket Lab set to attempt next mid-air helicopter rocket catch

NASA sounding rockets launch multiple science payloads

NASA rolls Moon rocket out to Kennedy Space Center launch pad

EARTH OBSERVATION
Can't Touch This: Sol 3640

Earth's oldest stromatolites and the search for life on Mars

University of Southern Queensland scientist unveils further proof of salty water on Mars

Martian Sausages: Sols 3641-3642

EARTH OBSERVATION
Astronauts enter China's Mengtian lab module for first time

Next-generation rocket for astronauts expected in 2027

China completes in-orbit maneuver to complete Tiangong space station assembly

China's Mengtian lab module docks with space station combination

EARTH OBSERVATION
First small geostationary HummingSat sold

Inspiring with STEM: Intelsat begins application process for STEM Program in Africa

Rivada Space Networks issues RFP for its satellite constellation

Inmarsat Government selects Rocket Lab to develop L-Band Radio

EARTH OBSERVATION
Satellogic completes investment in Officina Stellare

Chinese rocket re-enters Earth atmosphere uncontrolled over the Pacific Ocean

PCX Aerosystems acquires Timken Aerospace Drive Systems

Turning concrete into a clean energy source

EARTH OBSERVATION
Oldest planetary debris in our galaxy found from new study

Early planetary migration can explain missing planets

Do you speak extra-terrestrial?

Starshade competition challenges students to block starlight for observing exoplanets

EARTH OBSERVATION
Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea

NASA study suggests shallow lakes in Europa's icy crust could erupt

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.