. 24/7 Space News .
ENERGY TECH
Converting waste heat into electricity to power billions of sensors
by Staff Writers
Osaka, Japan (SPX) Mar 25, 2020

This image shows the external appearance of the developed compact, ultra-lightweight flexible thermoelectric conversion device.

Interconnected healthcare and many other future applications will require internet connectivity between billions of sensors. The devices that will enable these applications must be small, flexible, reliable, and environmentally sustainable. Researchers must develop new tools beyond batteries to power these devices, because continually replacing batteries is difficult and expensive.

In a study published in Advanced Materials Technologies, researchers from Osaka University have revealed how the thermoelectric effect, or converting temperature differences into electricity, can be optimally used to power small, flexible devices. Their study has shown why thermoelectric device performance to date has not yet reached its full potential.

Thermoelectric power generators have many advantages. For example, they are self-sustaining and self-powered, have no moving parts, and are stable and reliable. Solar power and vibrational power do not have all of these advantages. Aviation and many other industries use the thermoelectric effect. However, applications to thin, flexible displays are in their infancy.

Many researchers have optimized device performance solely from the standpoint of the thermoelectric materials themselves. "Our approach is to also study the electrical contact, or the switch that turns the device on and off," explains Tohru Sugahara, corresponding author of the study. "The efficiency of any device critically depends on the contact resistance."

In their study, the researchers used advanced engineering to make a bismuth telluride semiconductor on a 0.4-gram, 100-square-millimeter flexible, thin polymer film. This device weighs less than a paperclip, and is smaller than the size of an adult fingernail. The researchers obtained a maximum output power density of 185 milliwatts per square centimeter. "The output power meets standard specifications for portable and wearable sensors," says Sugahara.

However, approximately 40% of the possible output power from the device was lost because of contact resistance. In the words of Sugahara: "Clearly, researchers should focus on improving the thermal and electrical contact resistance to improve power output even further."

Japan's Society 5.0 initiative, aimed at helping everyone live and work together, proposes that the entirety of society will become digitalized. Such a future requires efficient ways to interconnect our devices. Technological insights, such as those by Ekubaru, co-lead author, and Sugahara, are necessary to make this dream a reality.

Research Report: "Fabrication and characterization of ultra-lightweight, compact, and flexible thermoelectric device based on highly refined chip mounting"


Related Links
Osaka University
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Geothermal energy: Unlimited renewable energy for our homes
Berlin, Germany (SPX) Mar 18, 2020
Geothermal energy is a renewable energy source that is available everywhere, notwithstanding changes in sunlight, wind, or ocean currents. The Earth's reservoirs of steam and hot water can be tapped to heat and cool buildings directly. In order to make the technology needed more affordable, and further improve its efficiency, seven countries, funded by the EU, have joined forces in order to reduce its cost by a quarter. The project is reaching its final stage and their first results are promising. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Insects, seaweed and lab-grown meat could be the foods of the future

How Space Station research is helping NASA's plans to explore the Moon and Beyond

Mission Control adjusts to coronavirus conditions

Science takes time, even in a lab moving 17,500 miles per hour

ENERGY TECH
Sea Launch command ship arrives in Russia from US

SpaceX aborts Sunday launch from Florida at last moment

NASA's mobile moon rocket tower 44% over budget, IG says

Guiana Space Center suspends launch campaigns

ENERGY TECH
Waves in thin Martian air with wide effects

ExoMars to take off for the Red Planet in 2022

Europe-Russia delay mission to find life on Mars

Organic molecules discovered by Curiosity Rover consistent with early life on Mars

ENERGY TECH
China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

China Prepares to Launch Unknown Satellite Aboard Long March 7A Rocket

China's Long March-5B carrier rocket arrives at launch site

ENERGY TECH
SpaceX launches Starlink mission from Florida

Coronavirus and ESA's duty of care

Soyuz to launch another batch of OneWeb constellation satellites

Making aerospace workforce training a national mandate for the future

ENERGY TECH
Flat-panel technology could transform antennas, wireless and cell phone communications

World Centric announces new World Centric leaf fiber lids

Creating custom light using 2D materials

Raytheon awarded $17 million for dual band radar spares for USS Ford

ENERGY TECH
Salmon parasite is world's first non-oxygen breathing animal

Observed: An exoplanet where it rains iron

Scientists have discovered the origins of the building blocks of life

ESO telescope observes exoplanet where it rains iron

ENERGY TECH
Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.