. | . |
Connecting optical observations to chemical changes by Staff Writers Houston TX (SPX) Sep 30, 2020
Imagine that you could determine the structural health of spacecraft materials simply by observing their color. Researchers at the Georgia Institute of Technology will use the International Space Station (ISS) to evaluate changes in the optical properties of common spacecraft materials as they are exposed to the extreme conditions of space. The research team will correlate this optical property data with material chemistry and expected lifetime data to produce a database that will be valuable both in remotely diagnosing the material health of spacecraft and in improving ground-based space environment simulation for materials testing. This investigation was awarded through an ISS U.S. National Laboratory solicitation for flight experiments that use the MISSE Flight Facility, an in-orbit platform from Alpha Space Test and Research Alliance deployed externally onboard the ISS. The Georgia Institute of Technology research team will prepare samples of conventional and novel spacecraft materials, including liquid crystal polymers (LCP), polyhedral oligomeric silsesquioxane (POSS), carbon fiber reinforced polymers, and polyethylene teraphthelate (PET) polyester films. After launch to the ISS, the samples will be mounted outside the station on the MISSE Flight Facility for a six-month exposure. During this time, samples will be optically characterized periodically and cross-referenced with radiation and atomic oxygen exposure data. After returning to Earth, the samples will be optically, chemically, and mechanically characterized to develop correlations between color and chemical changes in the material.
Diagnosing Material Health at a Distance This extreme environment causes chemical damage that manifests as changes in optical properties such as reflectance and absorptance. It also leads to changes in physical properties such as mechanical strength, electrical conductivity, and chemical reactivity. Developing a correlation of the changes in these properties as function of radiation dosage will allow researchers to infer a host of material properties based on one experimentally convenient measurement: color change. Using color as an indicator, earthbound observers could remotely diagnose the health of spacecraft and mission-critical components based on color shifts detected through remote observation. Aerospace engineers would significantly benefit from such insight into material behavior changes throughout a mission lifetime by remote and nondestructive examination. Further, building a library of visual observations for correlation with material performance may one day result in a predictive database enabling artificial intelligence systems to constantly monitor materials for space-induced material color change indicating potential failure.
Improved Simulation-Based Materials Testing on Earth Therefore, ground testing of materials for spacecraft requires thorough validation in order to develop reliable models of material degradation. The results of this investigation will generate benchmark data from ground-based studies of materials degradation and weathering that aid in the validation of data from ground-based space weather simulation experiments. "This potentially foundational work to correlate optical properties with chemical changes within spaceflight materials will improve situational awareness and reliability of satellites and space vehicles," said Dr. Ryan Reeves, program director of advanced materials at the Center for the Advancement of Science in Space, manager of the ISS National Lab. "This information will allow operators to access the material health of satellites and spacecraft from a distance to accurately pinpoint expected lifetimes."
Chromium steel was first made in ancient Persia London UK (SPX) Sep 23, 2020 Chromium steel - similar to what we know today as tool steel - was first made in Persia, nearly a millennium earlier than experts previously thought, according to a new study led by UCL researchers. The discovery, published in the Journal of Archaeological Science, was made with the aid of a number of medieval Persian manuscripts, which led the researchers to an archaeological site in Chahak, southern Iran. The findings are significant given that material scientists, historians and archaeolo ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |