. 24/7 Space News .
ROBO SPACE
Computer-aided creativity in robot design
by Daniel Ackerman for MIT News
Boston MA (SPX) Dec 01, 2020

MIT researchers have automated and optimized robot design with a system called RoboGrammar. The system creates arthropod-inspired robots for traversing a variety of terrains. Pictured are several robot designs generated with RoboGrammar.

So, you need a robot that climbs stairs. What shape should that robot be? Should it have two legs, like a person? Or six, like an ant?

Choosing the right shape will be vital for your robot's ability to traverse a particular terrain. And it's impossible to build and test every potential form. But now an MIT-developed system makes it possible to simulate them and determine which design works best.

You start by telling the system, called RoboGrammar, which robot parts are lying around your shop - wheels, joints, etc. You also tell it what terrain your robot will need to navigate. And RoboGrammar does the rest, generating an optimized structure and control program for your robot.

The advance could inject a dose of computer-aided creativity into the field. "Robot design is still a very manual process," says Allan Zhao, the paper's lead author and a PhD student in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). He describes RoboGrammar as "a way to come up with new, more inventive robot designs that could potentially be more effective."

Zhao is the lead author of the paper, which he will present at this month's SIGGRAPH Asia conference. Co-authors include PhD student Jie Xu, postdoc Mina Konakovic-Lukovic, postdoc Josephine Hughes, PhD student Andrew Spielberg, and professors Daniela Rus and Wojciech Matusik, all of MIT.

Ground rules
Robots are built for a near-endless variety of tasks, yet "they all tend to be very similar in their overall shape and design," says Zhao. For example, "when you think of building a robot that needs to cross various terrains, you immediately jump to a quadruped," he adds, referring to a four-legged animal like a dog. "We were wondering if that's really the optimal design."

Zhao's team speculated that more innovative design could improve functionality. So they built a computer model for the task - a system that wasn't unduly influenced by prior convention. And while inventiveness was the goal, Zhao did have to set some ground rules.

The universe of possible robot forms is "primarily composed of nonsensical designs," Zhao writes in the paper. "If you can just connect the parts in arbitrary ways, you end up with a jumble," he says. To avoid that, his team developed a "graph grammar" - a set of constraints on the arrangement of a robot's components. For example, adjoining leg segments should be connected with a joint, not with another leg segment. Such rules ensure each computer-generated design works, at least at a rudimentary level.

Zhao says the rules of his graph grammar were inspired not by other robots but by animals - arthropods in particular. These invertebrates include insects, spiders, and lobsters. As a group, arthropods are an evolutionary success story, accounting for more than 80 percent of known animal species. "They're characterized by having a central body with a variable number of segments. Some segments may have legs attached," says Zhao. "And we noticed that that's enough to describe not only arthropods but more familiar forms as well," including quadrupeds. Zhao adopted the arthropod-inspired rules thanks in part to this flexibility, though he did add some mechanical flourishes. For example, he allowed the computer to conjure wheels instead of legs.

A phalanx of robots
Using Zhao's graph grammar, RoboGrammar operates in three sequential steps: defining the problem, drawing up possible robotic solutions, then selecting the optimal ones. Problem definition largely falls to the human user, who inputs the set of available robotic components, like motors, legs, and connecting segments. "That's key to making sure the final robots can actually be built in the real world," says Zhao. The user also specifies the variety of terrain to be traversed, which can include combinations of elements like steps, flat areas, or slippery surfaces.

With these inputs, RoboGrammar then uses the rules of the graph grammar to design hundreds of thousands of potential robot structures. Some look vaguely like a racecar. Others look like a spider, or a person doing a push-up. "It was pretty inspiring for us to see the variety of designs," says Zhao. "It definitely shows the expressiveness of the grammar." But while the grammar can crank out quantity, its designs aren't always of optimal quality.

Choosing the best robot design requires controlling each robot's movements and evaluating its function. "Up until now, these robots are just structures," says Zhao. The controller is the set of instructions that brings those structures to life, governing the movement sequence of the robot's various motors. The team developed a controller for each robot with an algorithm called Model Predictive Control, which prioritizes rapid forward movement.

"The shape and the controller of the robot are deeply intertwined," says Zhao, "which is why we have to optimize a controller for every given robot individually." Once each simulated robot is free to move about, the researchers seek high-performing robots with a "graph heuristic search." This neural network algorithm iteratively samples and evaluates sets of robots, and it learns which designs tend to work better for a given task. "The heuristic function improves over time," says Zhao, "and the search converges to the optimal robot."

This all happens before the human designer ever picks up a screw.

"This work is a crowning achievement in the a 25-year quest to automatically design the morphology and control of robots," says Hod Lipson, a mechanical engineer and computer scientist at Columbia University, who was not involved in the project. "The idea of using shape-grammars has been around for a while, but nowhere has this idea been executed as beautifully as in this work. Once we can get machines to design, make and program robots automatically, all bets are off."

Zhao intends the system as a spark for human creativity. He describes RoboGrammar as a "tool for robot designers to expand the space of robot structures they draw upon." To show its feasibility, his team plans to build and test some of RoboGrammar's optimal robots in the real world. Zhao adds that the system could be adapted to pursue robotic goals beyond terrain traversing. And he says RoboGrammar could help populate virtual worlds. "Let's say in a video game you wanted to generate lots of kinds of robots, without an artist having to create each one," says Zhao. "RoboGrammar would work for that almost immediately."

One surprising outcome of the project? "Most designs did end up being four-legged in the end," says Zhao. Perhaps manual robot designers were right to gravitate toward quadrupeds all along. "Maybe there really is something to it."

Research Report: "RoboGrammar: Graph Grammar for Terrain-Optimized Robot Design"


Related Links
MIT News Office
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Machine learning guarantees robots' performance in unknown territory
Princeton NJ (SPX) Nov 18, 2020
A small drone takes a test flight through a space filled with randomly placed cardboard cylinders acting as stand-ins for trees, people or structures. The algorithm controlling the drone has been trained on a thousand simulated obstacle-laden courses, but it's never seen one like this. Still, nine times out of 10, the pint-sized plane dodges all the obstacles in its path. This experiment is a proving ground for a pivotal challenge in modern robotics: the ability to guarantee the safety and success ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Home away from home planet

Resolving mysteries about the first stellar parallaxes and distances

I am Artemis: Alabama Native Shoots for the Moon with NASA Career

Russian cosmonauts wrap up spacewalk

ROBO SPACE
NASA and SpaceX "Go" for Dec. 5 Cargo Resupply Launch

Rocket Lab launches satellites, recovers booster in 'Return to Sender' mission

NASA's 'super cool' engineers rehearse rocket fueling for Artemis I

Skyrora conducts vacuum chamber engine tests to replicate space-like conditions

ROBO SPACE
Field geology at Mars' equator points to ancient megaflood

Creating chaos: Craters and collapse on Mars

'Conscientiousness' key to team success during space missions

Hear audio from Perseverance as it travels through deep space

ROBO SPACE
China's space tracking ship sails for Chang'e 5 mission

China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

ROBO SPACE
UK government secures satellite network OneWeb

Ten satellites to be built in Glasgow in next three years

SpaceX's Starlink satellites are about to ruin stargazing for everyone

New support for UK space hubs unveiled

ROBO SPACE
Cracking the secrets of an emerging branch of physics

Video games are 'under-regulated': EU anti-terror czar

Using fabric to "listen" to space dust

Astroscale announces March 2021 Launch Date for Debris Removal Demonstration

ROBO SPACE
Here's Looking at You, MKID

A terrestrial-mass planet on the run?

A planet-forming disk still fed by the mother cloud

New Interdisciplinary Consortium for Astrobiology Research

ROBO SPACE
Swedish space instrument participates in the search for life around Jupiter

Researchers model source of eruption on Jupiter's moon Europa

Radiation Does a Bright Number on Jupiter's Moon

New plans afoot beyond Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.