![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Osaka, Japan (SPX) May 26, 2016
A group of researchers at Osaka University developed a method of the consecutive formation of bonds of two butadiene, alkyl groups, and benzene rings by using a cheap nickel catalyst. Using this technique, it has become possible to synthesize high-value terminal olefin by using cheap butadiene. Multicomponent reactions are methods which are superior in economy and efficiency to methods of bonding molecules by repeating reactions, but it was necessary to control the number of molecules to be bonded and locations of the bonds, so their applications were limited. Nobuaki Kambe, Professor, and Takanori Iwasaki, Assistant Professor, at the Graduate School of Engineering, Osaka University developed a synthetic method by constructing carbon frameworks of 8 carbons through the formation of a bond of two butadiene molecules by using a cheap nickel catalyst and introducing an alkyl group and a benzene ring to an internal and terminal carbons of 1,6-octadiene, respectively. Using this technique, it has become possible to synthesize high-value terminal olefin by using cheap butadiene. Using the same butadiene used in a wide range of fields as materials for synthetic rubber, such as tires and rubber hoses, and as materials for important industrial chemical compounds, such as butanediol and chloroprene. Recently, this group succeeded to develop the synthetic method of branched terminal olefins from butadiene and alkyl halides through selective introduction of alkyl group into the internal carbon of butadiene by the aid of Cu catalyst. This group's achievements will lead to the development of methods for synthesizing various organic materials from butadiene by using different catalysts. Furthermore, it is possible to synthesize butadiene from ethanol. This group's achievement demonstrates the possibility of changing high-value chemical compounds such as bioethanol, which has been gathering attention in recent years, into different chemical compounds by using catalysts differently. This research was featured in the electronic version of Angewandte Chemie International Edition on Thursday, March 3, 2016 and highlighted in the cover of the journal.
Related Links Osaka University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |