![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) May 18, 2016
Combining superhydrophobic surfaces with Leidenfrost levitation - picture a water droplet hovering over a hot surface rather than making physical contact with it - has been explored extensively for the past decade by researchers hoping to uncover the holy grail of water-repellent surfaces. In a new twist, a group of South Korean researchers from Seoul National University and Dankook University report an anomalous water droplet-bouncing phenomenon generated by Leidenfrost levitation on nanotextured surfaces in Applied Physics Letters, from AIP Publishing. "Wettability plays a key role in determining the equilibrium contact angles, contact angle hysteresis, and adhesion between a solid surface and liquid, as well as the retraction process of a liquid droplet impinged on the surface," explained Doo Jin Lee, lead author, and a postdoctoral researcher in the Department of Materials and Engineering at Seoul National University. Nonwetting surfaces tend to be created by one of two methods. "First, textured surfaces enable nonwettability because a liquid can't penetrate into the micro- or nano-features, thanks to air entrapment between asperities on the textured materials," Lee said. Or, second, the Leidenfrost effect "can help produce a liquid droplet dancing on a hot surface by floating it on a cushion of its own vapor," he added. "The vapor film between the droplet and heated surface allows the droplet to bounce off the surface - also known as the 'dynamic Leidenfrost phenomenon.'" Lee and colleagues developed a special "nonwetting, nanotextured surface" so they could delve into the dynamic Leidenfrost effect's impact on the material. "Our nanotextured surface was verified to be 'nonwetting' via thermodynamic analysis," Lee elaborated. "This analytical approach shows that the water droplet isn't likely to penetrate into the surface's nanoholes, which is advantageous for designing nonwetting, water-repellant systems. And the water droplet bouncing was powered by the synergetic combination of the nonwetting surface - often called a 'Cassie surface' - and the Leidenfrost effect." By comparing the hydrophobic surface and nanotextured surface, the group discovered that enhanced water droplet bouncing was created by the combined impact of the Leidenfrost levitation and the nonwetting Cassie state. "A thermodynamic approach predicts the nonwettability on the nanotextured surface, and a scaling law between the capillary and vapor pressure of the droplet explains the mechanism of the dynamic Leidenfrost phenomenon," said Lee. These findings should "be of value for a wide range of research areas, such as the study of nonwetting surfaces by the Leidenfrost effect and nanotextured features, enhanced liquid droplet bouncing, and film boiling of liquid droplets on heated Cassie surfaces," he added. Significantly, the group's work furthers the fundamental understanding of the dynamic Leidenfrost droplet levitation and droplet-bouncing phenomena on hydrophobic and nanoengineered surfaces. This means that it will be useful for developing highly water-repellant surfaces for industrial applications such as self-cleaning windows, windshields, exterior paints, anti-fouling coatings, roof tiles, and textiles in the future. "Our future work will focus on developing multiscale structures with microscale and nanoscale regularities, and explore the nonwetting characteristics of their surfaces with the dynamic Leidenfrost effect," Lee noted. Research paper: The article, "Anomalous water drop bouncing on a nanotextured surface by the Leidenfrost levitation," is authored by Doo Jin Lee and Young Seok Song. The article will appear in the Journal of Applied Physics Letters on May 17, 2016 [10.1063/1.4948769].
Related Links American Institute of Physics Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |