. 24/7 Space News .
TECH SPACE
Chemists make tough plastics recyclable
by Anne Trafton for MIT News
Boston MA (SPX) Jul 27, 2020

Thermoset polymers, found in car parts and electrical appliances, have to be durable and heat-resistant, but typically cannot be easily recycled or broken down after use. MIT chemists have now developed a way to modify thermoset plastics that allows them to be more easily broken down without compromising their mechanical strength.

Thermosets, which include epoxies, polyurethanes, and rubber used for tires, are found in many products that have to be durable and heat-resistant, such as cars or electrical appliances. One drawback to these materials is that they typically cannot be easily recycled or broken down after use, because the chemical bonds holding them together are stronger than those found in other materials such as thermoplastics.

MIT chemists have now developed a way to modify thermoset plastics with a chemical linker that makes the materials much easier to break down, but still allows them to retain the mechanical strength that makes them so useful.

In a study appearing in Nature, the researchers showed that they could produce a degradable version of a thermoset plastic called pDCPD, break it down into a powder, and use the powder to create more pDCPD. They also proposed a theoretical model suggesting that their approach could be applicable to a wide range of plastics and other polymers, such as rubber.

"This work unveils a fundamental design principle that we believe is general to any kind of thermoset with this basic architecture," says Jeremiah Johnson, a professor of chemistry at MIT and the senior author of the study.

Peyton Shieh, an American Cancer Society Postdoctoral Fellow at MIT, is the first author of the paper.

Hard to recycle
Thermosets are one of the two major classes of plastics, along with thermoplastics. Thermoplastics include polyethylene and polypropylene, which are used for plastic bags and other single-use plastics like food wrappers. These materials are made by heating up small pellets of plastic until they melt, then molding them into the desired shape and letting them cool back into a solid.

Thermoplastics, which make up about 75 percent of worldwide plastic production, can be recycled by heating them again until they become liquid, so they can be remolded into a new shape.

Thermoset plastics are made by a similar process, but once they are cooled from a liquid into a solid, it is very difficult to return them to a liquid state. That's because the bonds that form between the polymer molecules are strong chemical attachments called covalent bonds, which are very difficult to break. When heated, thermoset plastics will typically burn before they can be remolded, Johnson says.

"Once they are set in a given shape, they're in that shape for their lifetime," he says. "There is often no easy way to recycle them."

The MIT team wanted to develop a way to retain the positive attributes of thermoset plastics - their strength and durability - while making them easier to break down after use.

In a paper published last year, with Shieh as the lead author, Johnson's group reported a way to create degradable polymers for drug delivery, by incorporating a building block, or monomer, containing a silyl ether group. This monomer is randomly distributed throughout the material, and when the material is exposed to acids, bases, or ions such as fluoride, the silyl ether bonds break.

The same type of chemical reaction used to synthesize those polymers is also used to make some thermoset plastics, including polydicyclopentadiene (pDCPD), which is used for body panels in trucks and buses.

Using the same strategy from their 2019 paper, the researchers added silyl ether monomers to the liquid precursors that form pDCPD. They found that if the silyl ether monomer made up between 7.5 and 10 percent of the overall material, pDCPD would retain its mechanical strength but could be broken down into a soluble powder upon exposure to fluoride ions.

"That was the first exciting thing we found," Johnson says. "We can make pDCPD degradable while not hurting its useful mechanical properties."

New materials
In the second phase of the study, the researchers tried to reuse the resulting powder to form a new pDCPD material. After dissolving the powder in the precursor solution used to make pDCPD, they were able to make new pDCPD thermosets from the recycled powder.

"That new material has nearly indistinguishable, and in some ways improved, mechanical properties compared to the original material," Johnson says. "Showing that you can take the degradation products and remake the same thermoset again using the same process is exciting."

The researchers believe that this general approach could be applied to other types of thermoset chemistry as well. In this study, they showed that using degradable monomers to form the individual strands of the polymers is much more effective than using degradable bonds to "cross-link" the strands together, which has been tried before. They believe that this cleavable strand approach could be used to generate many other kinds of degradable materials.

"This is an exciting advance in engineering thermoset plastics," says Jeffrey Moore, a professor of chemistry at the University of Illinois, who was not involved in the study. "Chemists have spent most of their effort learning to synthesize better plastics, and far less chemistry research has been invested into the science of polymer deconstruction. Johnson's work helps to fill this important gap in fundamental knowledge while providing advances of technological significance."

If the right kinds of degradable monomers can be found for other types of polymerization reactions, this approach could be used to make degradable versions of other thermoset materials such as acrylics, epoxies, silicones, or vulcanized rubber, Johnson says.

The researchers are now hoping to form a company to license and commercialize the technology. MIT has also granted Millipore Sigma a non-exclusive license to manufacture and sell the silyl ether monomers for research purposes.

Patrick Casey, a new product consultant at SP Insight and a mentor with MIT's Deshpande Center for Technological Innovation, has been working with Johnson and Shieh to evaluate the technology, including performing some preliminary economic modeling and secondary market research.

"We have discussed this technology with some leading industry players, who tell us it promises to be good for stakeholders throughout the value chain," Casey says. "Parts fabricators get a stream of low-cost recycled materials; equipment manufacturers, such as automotive companies, can meet their sustainability objectives; and recyclers get a new revenue stream from thermoset plastics. The consumers see a cost saving, and all of us get a cleaner environment."

The research was funded by the National Science Foundation and the National Institutes of Health.

Research Report: "Cleavable comonomers enable degradable, recyclable thermoset plastics"


Related Links
MIT News Office
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Liverpool researchers build robot scientist that has already discovered a new catalyst
Liverpool UK (SPX) Jul 13, 2020
Researchers at the University of Liverpool have built an intelligent mobile robot scientist that can work 24-7, carrying out experiments by itself. The robot scientist, the first of its kind, makes its own decisions about which chemistry experiments to perform next, and has already discovered a new catalyst. It has humanoid dimensions and works in a standard laboratory, using instruments much like a human researcher does. However, unlike a human, this 400 kg robot has infinite patience ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Astronauts conclude third spacewalk on historic SpaceX mission

From the Moon to Mars: China's march across space

Astronauts add expertise, refine space station science in orbit

Student space simulation is seeking astronauts

TECH SPACE
Rocket to lift Mars probe moved to launch pad

Soyuz Launches From Kourou to Resume in October, German Aerospace Centre Says

New electric propulsion chamber explores the future of space travel

NASA astronauts and Russian cosmonauts perform habitability test of Crew Dragon capsule

TECH SPACE
Emirates Mars Mission to launch with ASU instrument

UAE again delays Mars probe launch over weather

Emirates Mars Mission delayed a second time by weather

UAE plans to launch Mars probe Friday after weather delay

TECH SPACE
Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

TECH SPACE
China launches new commercial telecommunication satellite

Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

SpaceX delays launch of mini-satellites

Columbus gets a new European science rack

TECH SPACE
Microsoft sees growth amid pandemic computing demands

Coronavirus boon for Poland's vibrant gaming sector

NASA's Deep Space Station in Australia Is Getting an Upgrade

Shock-dissipating fractal cubes could forge high-tech armor

TECH SPACE
Artificial intelligence predicts which planetary systems will survive

'Disk Detective' Needs Your Help Finding Disks Where Planets Form

Supercomputer reveals atmospheric impact of gigantic planetary collisions

NASA Awards SETI Institute Contract for Planetary Protection Support

TECH SPACE
The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.