. 24/7 Space News .
TECH SPACE
Chemists devise revolutionary 3-D bone-scanning technique
by Staff Writers
Dublin, Ireland (SPX) Sep 12, 2016


The technique provides 3-D images of an unparalleled resolution without using X-rays. It should have major implications for the diagnosis and treatment of bone injuries. Image courtesy Trinity College Dublin. Watch a video on the research here.

Chemists from Trinity College Dublin, in collaboration with RCSI, have devised a revolutionary new scanning technique that produces extremely high-res 3D images of bones - without exposing patients to X-ray radiation.

The chemists attach luminescent compounds to tiny gold structures to form biologically safe 'nanoagents' that are attracted to calcium-rich surfaces, which appear when bones crack - even at a micro level. These nanoagents target and highlight the cracks formed in bones, allowing researchers to produce a complete 3D image of the damaged regions.

The technique will have major implications for the health sector as it can be used to diagnose bone strength and provide a detailed blueprint of the extent and precise positioning of any weakness or injury. Additionally, this knowledge should help prevent the need for bone implants in many cases, and act as an early-warning system for people at a high risk of degenerative bone diseases, such as osteoporosis.

The research, led by the Trinity College Dublin team of Professor of Chemistry, Thorri Gunnlaugsson, and Postdoctoral Researcher, Esther Surender, has just been published in the leading journal Chem, a sister journal to Cell, which is published by CellPress.

Professor Gunnlaugsson said: "This work is the outcome of many years of successful collaboration between chemists from Trinity and medical and engineering experts from RCSI. We have demonstrated that we can achieve a three-dimensional map of bone damage, showing the so-called microcracks, using non-invasive luminescence imaging. The nanoagent we have developed allows us to visualise the nature and the extent of the damage in a manner that wasn't previously possible. This is a major step forward in our endeavour to develop targeted contrast agents for bone diagnostics for use in clinical applications."

The work was funded by Science Foundation Ireland and by the Irish Research Council, and benefited from collaboration with scientists at RCSI (Royal College of Surgeons in Ireland), led by Professor of Anatomy, Clive Lee.

Professor Lee said: "Everyday activity loads our bones and causes microcracks to develop. These are normally repaired by a remodelling process, but, when microcracks develop faster, they can exceed the repair rate and so accumulate and weaken our bones. This occurs in athletes and leads to stress fractures. In elderly people with osteoporosis, microcracks accumulate because repair is compromised and lead to fragility fractures, most commonly in the hip, wrist and spine. Current X ray techniques can tell us about the quantity of bone present but they do not give much information about bone quality."

He continued: "By using our new nanoagent to label microcracks and detecting them with magnetic resonance imaging (MRI), we hope to measure both bone quantity and quality and identify those at greatest risk of fracture and institute appropriate therapy. Diagnosing weak bones before they break should therefore reduce the need for operations and implants - prevention is better than cure."

In addition to the unprecedented resolution of this imaging technique, another major step forward lies in it not exposing X-rays to patients. X-rays emit radiation and have, in some cases, been associated with an increased risk of cancer. The red emitting gold-based nanoagents used in this alternative technique are biologically safe - gold has been used safely by medics in a variety of ways in the body for some time.

Dr Esther Surender, Trinity, said: "These nanoagents have great potential for clinical application. Firstly, by using gold nanoparticles, we were able to lower the overall concentration of the agent that would have to be administered within the body, which is ideal from a clinical perspective. Secondly, by using what is called 'two-photon excitation' we were able to image bone structure using long wavelength excitation, which is not harmful or damaging to biological tissues."

She added: "These nanoagents are similar to the contrast agents that are currently being utilised for MRI within the clinic, and hence have the potential to provide a novel means of medical bone diagnosis in the future. Specifically, by replacing the Europium with its sister ion Gadolinium, we can tune into the MRI activity of these nanoagents for future use alongside X-ray and computed tomography (CT) scans."

Professor Gunnlaugsson and his research team are based in the Trinity Biomedical Sciences Institute (TBSI), which recently celebrated its 5-Year anniversary. Professor Gunnlaugsson presented his research at a symposium to mark the occasion, along with many other world-leaders in chemistry, immunology, bioengineering and cancer biology.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Trinity College Dublin
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Super-resolution microscope builds 3-D images by mapping negative space
Austin XT (SPX) Sep 07, 2016
Scientists at The University of Texas at Austin have demonstrated a method for making three-dimensional images of structures in biological material under natural conditions at a much higher resolution than other existing methods. The method may help shed light on how cells communicate with one another and provide important insights for engineers working to develop artificial organs such as skin ... read more


TECH SPACE
Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

As dry as the moon

TECH SPACE
Storm Reduces Available Solar Energy on Opportunity

NASA Approves 2018 Launch of Mars InSight Mission

Anomalous grooves on Martian moon Phobos explained by impacts

Test for damp ground at Mars' seasonal streaks finds none

TECH SPACE
Vietnam's 'Silicon Valley' sparks startup boom

Taiwan tourism industry hit by drop in Chinese visitors

The Deep Space Network

At Berlin tech fair, waterproof gadgets make a splash

TECH SPACE
China's newly-launched quantum communication satellite in good shape

China Sends Country's Largest Carrier Rocket to Launch Base

'Heavenly Palace': China to Launch Two Manned Space Missions This Fall

China unveils Mars probe, rover for ambitious 2020 mission

TECH SPACE
US astronauts complete spacewalk for ISS maintenance

Space Station's orbit adjusted Wednesday

Astronauts Relaxing Before Pair of Spaceships Leave

'New port of call' installed at space station

TECH SPACE
SpaceX scours data to try to pin down cause rocket explosion on launch pad

India To Launch 5 Satellites In September

With operational acceptance complete, Western Range is ready for launch

Sky Muster II comes to French Guiana for launch on Ariane 5

TECH SPACE
New light on the complex nature of 'hot Jupiter' atmospheres

Discovery one-ups Tatooine, finds twin stars hosting three giant exoplanets

Could Proxima Centauri b Really Be Habitable

Rocky planet found orbiting habitable zone of nearest star

TECH SPACE
Chemists devise revolutionary 3-D bone-scanning technique

A data-cleaning tool for building better prediction models

New material with exceptional negative compressibility

UMD physicists discover 'smoke rings' made of laser light









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.