. 24/7 Space News .
NANO TECH
Chemical synthesis of nanotubes
by Staff Writers
Tokyo, Japan (SPX) Jan 11, 2019

A nanometer-sized pNT cylinder made of 40 benzenes. The cylinder is tens of thousands of times thinner than a human hair.

For the first time, researchers used benzene - a common hydrocarbon - to create a novel kind of molecular nanotube, which could lead to new nanocarbon-based semiconductor applications.

Researchers from the Department of Chemistry have been hard at work in their recently renovated lab in the University of Tokyo's Graduate School of Science.

The pristine environment and smart layout affords them ample opportunities for exciting experiments. Professor Hiroyuki Isobe and colleagues share an appreciation for "beautiful" molecular structures and created something that is not only beautiful but is also a first for chemistry.

Their phenine nanotube (pNT) is beautiful to see for its pleasing symmetry and simplicity, which is a stark contrast to its complex means of coming into being. Chemical synthesis of nanotubes is notoriously difficult and challenging, even more so if you wish to delicately control the structures in question to provide unique properties and functions.

Typical carbon nanotubes are famous for their perfect graphite structures without defects, but they vary widely in length and diameter. Isobe and his team wanted a single type of nanotube, a novel form with controlled defects within its nanometer-sized cylindrical structure allowing for additional molecules to add properties and functions.

The researchers' novel process of synthesis starts with benzene, a hexagonal ring of six carbon atoms. They use reactions to combine six of these benzenes to make a larger hexagonal ring called a cyclo-meta-phenylene (CMP).

Platinum atoms are then used which allow four CMPs to form an open-ended cube. When the platinum is removed, the cube springs into a thick circle and this is furnished with bridging molecules on both ends enabling the tube shape.

It sounds complicated, but amazingly, this complex process successfully bonds the benzenes in the right way over 90 percent of the time. The key also lies in the symmetry of the molecule, which simplifies the process to assemble as many as 40 benzenes.

These benzenes, also called phenines, are used as panels to form the nanometer-sized cylinder. The result is a novel nanotube structure with intentional periodic defects. Theoretical investigations show these defects imbue the nanotube with semiconductor characters.

"A crystal of pNT is also interesting: The pNT molecules are aligned and packed in a lattice rich with pores and voids," Isobe explains. "These nanopores can encapsulate various substances which imbue the pNT crystal with properties useful in electronic applications. One molecule we successfully embedded into pNT was a large carbon molecule called fullerene (C70)."

"A team lead by Kroto/Curl/Smalley discovered fullerenes in 1985. It is said that Sir Harold Kroto fell in love with the beautiful molecule," continues Isobe. "We feel the same way about pNT. We were shocked to see the molecular structure from crystallographic analysis. A perfect cylindrical structure with fourfold symmetry emerges from our chemical synthesis."

"After a few decades since the discovery, this beautiful molecule, fullerene, has found various utilities and applications," adds Isobe. "We hope that the beauty of our molecule is also pointing to unique properties and useful functions waiting to be discovered."

Research Report: Zhe Sun, Koki Ikemoto, Toshiya M. Fukunaga, Takashi Koretsune, Ryotaro Arita, Sota Sato and Hiroyuki Isobe. Finite phenine nanotubes with periodic vacancy defects. Science. DOI:10.1126/science.aau5441


Related Links
University of Tokyo
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


NANO TECH
Carrying and releasing nanoscale cargo with 'nanowrappers'
Upton NY (SPX) Jan 04, 2019
This holiday season, scientists at the Center for Functional Nanomaterials (CFN) - a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory - have wrapped a box of a different kind. Using a one-step chemical synthesis method, they engineered hollow metallic nanosized boxes with cube-shaped pores at the corners and demonstrated how these "nanowrappers" can be used to carry and release DNA-coated nanoparticles in a controlled way. The research is reported in a paper pu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
London retains tech start-up crown: study

Russian Soyuz Vehicles to Carry Out Record-Long Missions to ISS in 2019

Russia demands explanation over US snub to space chief

Roscosmos Expects NASA to Explain Position on Rogozin's Visit to US

NANO TECH
Russia continues work on plasma engine for superfast space travel

What You Need to Know About Russia's Vostochny Cosmodrome

Russian Soyuz-2 1a Rocket With Satellites Blasts Off From Vostochny Cosmodrome

Number of World's Space Launches in 2018 Exceeds 100, Space Industry Source Says

NANO TECH
UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

Over Six Months Without Word From Opportunity

NANO TECH
China's Chang'e-4 makes historic landing on moon's far side

China launches first Hongyun project satellite

China's Chang'e-4 probe enters lunar orbit

China launches rover for first far side of the moon landing

NANO TECH
Year of many new beginnings for Indian space sector

ESA astronaut Alexander Gerst returns to Earth for the second time

Spacecraft Repo Operations

Scaled back OneWeb constellation Not to affect number of Soyuz boosters

NANO TECH
New technique offers rapid assessment of radiation exposure

A high-performance material at extremely low temperatures

Chemical catalysts turn tiny 2D sheets into 3D objects

Raytheon contracts Elbit Systems for Two Color Laser System

NANO TECH
Galaxy collision could send solar system flying

Early protostar already has a warped disk

Baby star's fiery tantrum could create building blocks of planets

Scientists discover how and when DNA replicates

NANO TECH
New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'

NASA succeeds in historic flyby of faraway world









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.