. | . |
Cement design should take into account the water confined in the smallest pores by Staff Writers Leioa, Spain (SPX) Aug 10, 2016
As it is a basic building material used across the world, cement is subjected to a vast range of conditions, both physiological and meteorological, no matter whether they are caused by extreme temperatures and humidity, pressure, etc. It is possible to find conditions ranging from -80C, in places such as the scientific bases in the Antarctic, to several hundreds of degrees in infrastructures close to heat sources or in the case of fires, for example. These variations in humidity and temperature are translated into physical processes involving evaporation or freezing of the water contained in the cement paste, which often cause stresses and even micro-cracking inside the cement. Characterizing the response to these phenomena affecting the confined water in the smallest pores of the cement "is hugely important as a large proportion of the water, about 30 %, is located in these small spaces, so to a great extent it contributes towards the final properties of the material," explained Hegoi Manzano, a researcher in the UPV/EHU's department of Condensed Matter Physics, and author of the study in collaboration with a research group of the University of Tohoku in Japan. Given the complexity involved in studying the behaviour of the water located in such tiny pores of approximately 1 nanometre in size by means of experimental channels, the researchers resorted to molecular simulation methods that "imitate" the interactions among the atoms that make up the cement in order to determine how they behave as a whole and the properties that these interactions are translated into," he explained. The temperature range they studied was from -170 + C to 300 + C.
Stresses at both extremes At the other extreme, at extremely low temperatures, what happens is that the water freezes and therefore expands. "In these conditions it should be highlighted that the frozen water does not manage to form ice because of the small space in which it is located; the water molecules cannot order themselves to form a crystalline ice structure," he stressed. But the expansion it undergoes is enough to create stresses in the cement and likewise cause micro cracking. The information extracted from this study can be used to "modify the formulation of the cement for infrastructures that are going to be located in environments with extreme temperatures. Let us take for example an oil company: knowing the stresses and forces that may be created in the cement, they would have the chance to change certain design factors, such as the additives added to the cement to compensate for the expansion or collapsing of the material in oil wells. That would be the ideal application of the work," concluded Manzano. P. A. Bonnaud, H. Manzano, R. Miura, A. Suzuki, N. Miyamoto, N. Hatakeyama, A. Miyamoto. Temperature Dependence of Nanoconfined Water Properties: Application to Cementitious Materials. J. Phys. Chem. C, 2016, 120 (21), pp 11465-11480. DOI: 10.1021/acs.jpcc.6b00944. Publication Date (Web): May 10, 2016
Related Links University of the Basque Country Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |