. 24/7 Space News .
CLONE AGE
Cell memory loss enables the production of stem cells
by Staff Writers
Boston MA (SPX) Dec 17, 2015


Induced pluripotent stem cell (iPS cell) colonies were generated after researchers at Harvard Stem Cell Institute suppressed the CAF1 gene. Image courtesy Sihem Chaloufi. For a larger version of this image please go here.

They say we can't escape our past - no matter how much we change, we still have the memory of what came before; the same can be said of our cells. Adult cells, such as skin or blood cells, have a cellular "memory," or record of how the cell changes as it develops from an uncommitted embryonic cell into a specialized adult cell.

Now, Harvard Stem Cell Institute researchers at Massachusetts General Hospital (MGH) in collaboration with scientists from the Research Institutes of Molecular Biotechnology (IMBA) and Molecular Pathology (IMP) in Vienna have identified genes that when suppressed effectively erase a cell's memory, making the cell more susceptible to reprogramming and, consequently, making the process of reprogramming quicker and more efficient.

"We began this work because we wanted to know why a skin cell is a skin cell, and why does it not change its identity the next day, or the next month, or a year later?" said co-senior author Konrad Hochedlinger, PhD, an HSCI Principal Faculty member at MGH and Harvard's Department of Stem Cell and Regenerative Biology, and a world expert in cellular reprogramming.

Every cell in the human body has the same genome, or DNA blueprint, explained Hochedlinger, and it is how those genes are turned on and off during development that determines what kind of adult cell each will become. By manipulating those genes and introducing new factors, scientists can unlock dormant parts of an adult cell's genome and reprogram it into another cell type.

However, "a skin cell knows it is a skin cell," said IMBA's Josef Penninger, even after scientists reprogram those skin cells into induced pluripotent stem cells (iPS cells) - a process that would ideally require a cell to "forget" its identity before assuming a new one. Cellular memory is often conserved, acting as a roadblock to reprogramming. "We wanted to find out which factors stabilize this memory and what mechanism prevents iPS cells from forming," Penninger said.

To identify potential factors, the team established a genetic library targeting known chromatin regulators - genes that control the packaging and bookmarking of DNA, and are involved in creating cellular memory.

Hochedlinger and Sihem Cheloufi, co-first author and a postdoc in Hochedlinger's lab, designed a screening approach that tested each of these factors.

Of the 615 factors screened, the researchers identified four chromatin regulators, three of which had not yet been described, as potential roadblocks to reprogramming. In comparison to the three to four fold increase seen by suppressing previously known roadblock factors, inhibiting the newly described CAF1 (chromatin assembly factor 1) made the process 50 to 200 fold more efficient. Moreover, in the absence of CAF1 reprogramming turned out to be much faster: While the process normally takes nine days, the researchers could detect the first iPS cell after four days.

"The CAF1 complex ensures that during DNA replication and cell division daughter cells keep their memory, which is encoded on the histones that the DNA is wrapped around," said Ulrich Elling, a co-first author from IMBA. "When we block CAF-1, daughter cells fail to wrap their DNA the same way, lose this information and covert into blank sheets of paper. In this state, they respond more sensitively to signals from the outside, meaning we can manipulate them much more easily."

By suppressing CAF-1 the researchers were also able to facilitate the conversion of one type of adult cell directly into another, skipping the intermediary step of forming iPS cells, via a process called direct reprogramming, or transdifferentiation. Thus, CAF-1 appears to act as a general guardian of cell identity whose depletion facilitates both the interconversion of one adult cell type to another as well as the conversion of specialized cells into iPS cells.

In finding CAF-1, the researchers identified a complex that allows cell memory to be erased and rewritten. "The cells forget who they are, making it easier to trick them into becoming another type of cell," said Sihem Cheloufi.

CAF-1 may provide a general key to facilitate the "reprogramming" of cells to model disease and test therapeutic agents, IMP's Johannes Zuber explained. "The best-case scenario," Zuber said, "is that with this insight, we hold a universal key in our hands that will allow us to model cells at will."

The study was recently published in Nature.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Harvard Medical School
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CLONE AGE
Can stem cell technology be harnessed to generate biological pacemakers?
London, UK (SPX) Nov 26, 2015
Although today's pacemakers are lifesaving electronic devices, they are limited by their artificial nature. For example, their parts can fail or they can become infected. In addition, the devices require regular maintenance, must be replaced periodically, and can only approximate the natural regulation of a heartbeat. A Review article published on November 20 in Trends in Molecular Medicin ... read more


CLONE AGE
XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

CLONE AGE
Opportunity on west rim of Endeavour Crater within Marathon Valley

Curiosity reaches sand dunes

NASA's Curiosity rover reaches Martian sand dunes

Mars Mission Team Addressing Vacuum Leak on Key Science Instrument

CLONE AGE
China drives global patent applications to new high

Australia seeks 'ideas boom' with tax breaks, visa boosts

A Year After Maiden Voyage, Orion Progress Continues

NASA's Work to Understand Climate: A Global Perspective

CLONE AGE
China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

CLONE AGE
First Briton to travel to ISS blasts off into space

Tim Peake begins six-month stay on Space Station

British astronaut swaps family Christmas for space mission

Three astronauts land back on Earth from space station

CLONE AGE
Japan to launch X-ray astronomy satellite after 2 months

Russia Puts Military Satellite Into Orbit on December 13

China Launches New ChinaSat 1C Communication Satellite

GSDO review marks progress for KSC's modernization

CLONE AGE
Hubble reveals diversity of exoplanet atmosphere

Mystery of missing exoplanet water solved

Student helps discover new planet, calculates frequency of Jupiter-like planets

What kinds of stars form rocky planets

CLONE AGE
Scientists create atomically thin boron

Turning rice farming waste into useful silica compounds

Hybrid material presents potential for 4-D-printed adaptive devices

The artificial materials that came in from the cold









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.