. 24/7 Space News .
TECH SPACE
Celebrating a mission that changed how we use radar
by Claire Marie-Peterson for JPL News
Pasadena CA (JPL) Oct 14, 2019

SIR-C/X-SAR is shown here in the payload bay of the orbiting space shuttle Endeavour (STS-59), with an area of the Pacific Ocean northeast of Hawaii in the background. The photograph was taken with a hand-held 70-millimeter camera through the space shuttle's aft flight deck windows. SIR-C/X-SAR's antenna, with its large triangular support structure and flat antenna panels, almost fills the payload bay. Embedded in the antenna are hundreds of small transmitters and receivers. The antenna panels gather data simultaneously at three frequencies: C-Band, L-Band and X-Band. Six NASA astronauts spent a week and a half in Earth orbit in support of the radar mission.

Oct. 11, 2019, marks the 25th anniversary of the end of a space mission that transformed the way we use radar to observe large-scale environmental processes on our home planet. The Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) mission made available to people worldwide the scientific data used to this day to inform decisions to slow and mitigate climate change.

The SIR-C instrument, built by NASA'S Jet Propulsion Laborator in Pasadena, California, and the X-SAR instrument, built by the German Aerospace Center (DLR), constituted the most advanced imaging radar system ever used in air or space. During hundreds of orbits on two flights aboard the Space Shuttle Endeavour, in April and October 1994, the radar system made multiple passes over 19 "supersites" - areas of scientific interest in such locations as the Sahara, Brazil, the Alps and the Gulf Stream. It also imaged events occurring during the flights, such as as a volcano erupting in Russia.

"The many innovationsof SIR-C/X-SAR have been used in virtually every air- and spaceborne radar mission since, starting with NASA's Shuttle Radar Topography Mission, which mapped 80% of the Earth in 2000," said Tony Freeman, now manager of JPL's Innovation Foundry, who led end-to-end calibration of SIR-C. "DLR's TerraSAR-X and TanDEM-X missions have since filled remaining gaps."

Radar imaging of Earth has never been the same since SIR-C/X-SAR's demonstration of what's known as simultaneous multifrequency, fully polarized, repeat-pass interferometric SAR. To unpack that sizable trunk of terminology, let's start with "synthetic aperture radar": Since the late 1970s, NASA has been imaging Earth with radar - in darkness, under cloud cover or vegetation, even underground - using the movements of a host airplane or spacecraft to "synthesize" an "aperture" much larger than the antenna itself. The larger the aperture, the greater the image resolution. Indeed, SIR-C's predecessors, SIR-A and SIR-B, were synthetic aperture radar missions.

However, unlike SIR-C/X-SAR, neither predecessor made radar observations simultaneously in three frequencies - C-, L- and X-band - using three adjacent antennas combined into a massive, 12-by-4-meter, 11.5-ton structure. That advance, analogous to the leap from black-and-white to color film, allowed the mission to collect data in different scales, providing a crisp snapshot of each targeted feature, unmuddied by possible changes over time.

Blazing a Trail
In addition to multiple frequencies, some observations were made in multiple "polarizations." Radio frequency waves can be either horizontal (in a wavy plane parallel to the ground) or vertical (in a plane perpendicular to the ground). The C- and L-band antennas could send and receive waves of both horizontal and vertical polarization. Using this "fully polarized" data, scientists can separate out the scattering of radar waves to distinguish, for example, vegetated from unvegetated terrain.

SIR-C/X-SAR wanted to capture changes over time; that's why it flew on shuttle flights six months apart. To observe the same supersites during both flights and to make consistent daily passes over them, the shuttle crew used sophisticated algorithms to navigate the spacecraft in precise orbits as close as 10 meters apart. And they did this flying upside down, since the cargo bay holding the instruments was on top of the shuttle. While the X-band antenna had a hinge, the C- and L-band antennas were fixed at a particular angle, but they had "electronic steering" that allowed them to "see" to either side of what was right in front of them.

Those repeated, slightly offset passes over the same terrain were essential for the data-processing technique of interferometry. Combining views, interferometry creates detailed, 3D topographical images of a target at the moment of simultaneous observations. And it can reveal even minute changes in the target between successive observations - like the gradual creep of an earthquake fault or the movement of an ice sheet.

The SIR-C/X-SAR dataset proved immediately useful, revealing, for instance, ancient riverbeds beneath the Sahara - an artifact of preindustrial climate change - and remains in high demand.

"SIR-C/X-SAR was the path opener for multiple U.S. and international missions that followed," said Charles Elachi, the mission's principal investigator before he became director of JPL. "Imaging of subsurface river channels in the Eastern Sahara enabled new understanding of the environmental history of that and other arid regions. Using multiple frequencies enabled for the first time 'color' radar images that have been used extensively to map vegetation and forests and extract their vegetation content. Using repeat-pass interferometry enabled us for the first time to map surface motion at the centimeter level. This technique is now commonly used to map motions resulting from earthquakes, volcanic eruptions and other natural disasters."

Freeman agrees: "SIR-C/X-SAR was innovative on so many fronts: We knew what we were working on was something special, but we didn't know at the time how many firsts the mission would rack up".

The NASA Image and Video Library makes mission data available to researchers worldwide. The University of Michigan hosts a search tool for accessing its own vast SIR-C/X-SAR database. And in its MapReady tool the University of Alaska Satellite Facility has processed the data for compatibility with multiple computer platforms.

Missions using technologies pioneered by SIR-C/X-SAR have revealed changes in Earth's natural features over increasingly meaningful periods, informing long-term policy to prevent and mitigate climate change. At the same time, they reveal the immediate effects of natural disasters rapidly enough to advise first responders.

SIR-C/X-SAR was a collaboration of NASA, DLR and the Italian Space Agency (ASI), which contributed to the ground segment for X-SAR observations. JPL managed the mission for NASA. DLR was responsible for calibration, operations and data processing for X-SAR.


Related Links
SIR-C/X-SAR database at University of Michigan
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
L3Harris awarded nearly $12.8M for Eglin AN/FPS-85 radar work
Washington (UPI) Sep 19, 2019
L3Harris Technologies has been awarded a $12.8 million in a contract for sustainment support of the Eglin AN/FPS-85 radar in the Air Force Space Command Space Surveillance Network. The contract, announced Wednesday by the Department of Defense, applies to a previously awarded contract to L3 Harris Technologies, Colorado Springs, Colorado for sustainment support of the radar. The Eglin AN/FPS-85 Radar is a computer-controlled, phased-array radar set operating in the Air Force Space Comman ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Russia bestows medal on US astronaut in failed launch

Luca powers up for a spacewalk

Astronauts will spend much of October outside the space station

Raytheon to help Jet Propulsion Lab explore the universe

TECH SPACE
NASA and SpaceX hope for manned mission to ISS in early 2020

SwRI hypersonic research spotlights future flight challenges

NASA, SpaceX present united front on human spaceflight

Sea Launch platform stripped of foreign equipment, ready to leave US for Russia

TECH SPACE
Curiosity findings suggest Mars once featured dozens of shallow briny ponds

Global analysis of submarine canyons may shed light on Martian landscapes

River relic spied by Mars Express

NASA's Curiosity Rover finds an ancient oasis on Mars

TECH SPACE
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

TECH SPACE
Call for innovation to advance Europe's lab in space

UK space skills support sustainable development

Competition to find business ideas that are out of this world

Talking space with the next generation in Europe

TECH SPACE
Astroscale takes next step towards commercial active debris removal mission

SwRI, international team use deep learning to create virtual 'super instrument'

How do the strongest magnets in the universe form?

When debris overwhelms space exploitation

TECH SPACE
Scientists observe formation of individual viruses, a first

Liquifying a rocky exoplanet

Were hot, humid summers the key to life's origins?

A planet that should not exist

TECH SPACE
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.