. 24/7 Space News .
Cassini Finds Saturn Moons Are Active

This splendid view showcases Dione's tortured complex of bright cliffs. At lower right is the feature called Cassandra, exhibiting linear rays extending in multiple directions. The trailing hemisphere of Dione (1,126 kilometers, or 700 miles across) is seen here. North is up. The image was taken in polarized green light with the Cassini spacecraft narrow-angle camera on July 24, 2006 at a distance of approximately 263,000 kilometers (163,000 miles) from Dione. Image scale is 2 kilometers (1 mile) per pixel.

The Cassini-Huygens mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington, D.C. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colo.

by Staff Writers
Pasadena CA (JPL) Jun 15, 2007
Saturn's moons Tethys and Dione are flinging great streams of particles into space, according to data from the Cassini mission to Saturn. The discovery suggests the possibility of some sort of geological activity, perhaps even volcanic, on these icy worlds.

These results appear in this week's issue of the journal Nature. The Cassini mission is a cooperative project of NASA, the European Space Agency and the Italian Space Agency.

The particles were traced to the two moons because of the dramatic outward movement of electrically charged gas, which could be mapped back to the moons' orbits in the magnetic environment of Saturn. Known as plasma, the gas is composed of negatively charged electrons and positively charged ions, which are atoms with one or more electrons missing. Because they're charged, the electrons and ions can become trapped inside a magnetic field.

Saturn rotates in just 10 hours and 46 minutes. This sweeps the magnetic field and the trapped plasma through space. Just like a child on a fast-spinning merry-go-round, the trapped gas feels a force trying to throw it outwards, away from the center of rotation.

Soon after the Cassini spacecraft reached Saturn in June 2004, its instruments revealed that the planet's hurried rotation squashes the plasma into a disc, and that great fingers of gas are being thrown out into space from the disc's outer edges. Hotter, more tenuous plasma then rushes in to fill the gaps.

Now, Jim Burch, team member of the Cassini Plasma Spectrometer at the Southwest Research Institute, San Antonio, Texas, and his colleagues have made a careful study of these events using the instrument. They have found that the direction of the ejected electrons points back towards Tethys and Dione. "It establishes Tethys and Dione as important sources of plasma in Saturn's magnetosphere," said Burch.

Until this discovery, the only moons of Saturn known to be active worlds were Titan and Enceladus. "This new result seems to be a strong indication that there is activity on Tethys and Dione as well," said Andrew Coates from the Mullard Space Science Laboratory, University College London, co-author and member of the Cassini Plasma Spectrometer team.

Activity is a draw for planetary scientists, as it means that the planet has yet to become geologically dead or is perhaps being supplied with energy. The activity on Enceladus was detected first by Cassini's Dual Technique Magnetometer. This led the flight team to schedule a particularly close pass of Enceladus, which revealed a wealth of data about Enceladus' alien geysers - and spectacular pictures, too.

"The best results arise when we combine a variety of data sets to understand the observations," said Michele Dougherty, Imperial College, London, who is principal investigator of the magnetometer.

Future flybys of Dione and Tethys will allow the magnetometer team and the other instrument teams a close-up look at the moons. Before that happens, the teams have to go back and search for further signs of activity in the data already collected during the Tethys and Dione flybys of 2005.

In addition, having detected the electrons, they will try to determine the composition of the Tethys and Dione plasma using ion data.

Email This Article

Related Links
Cassini at JPL
Cassini images
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Dissecting Titanic Dirt
Paris, France (ESA) Jun 08, 2007
Planetary scientists are a step closer to understanding the composition of the dust in Titan's atmosphere. A decade-long programme of laboratory studies, aiming to reproduce Titan's unique dust, or 'aerosol' population in specially constructed reactors, has proved invaluable.







  • EADS To Offer Tourist Spacecraft By 2012
  • Stardust Memories As Space Becomes The Final Frontier In Funerals
  • Vignette Helps NASA Make Giant Leap To The Moon And Beyond
  • Star Trek Fans Beam Into Canadian Wild West

  • Simulating The Effects Of Martian Dust On The Phoenix Lander
  • Wandering Poles May Explain Ups And Downs Of Ancient Mars Shoreline
  • Spirit Studies Layered Rocks At Home Plate
  • The Viability Of Methane-Producing Microorganisms In Simulated Martian Soils

  • Dawn Spacecraft Never Damaged Set To Launch July 7
  • Proton-M Rocket With US Satellite To Lift Off July 7
  • Delta 2 Launch To Launch COSMO-SkyMed Satellite
  • Russia Launches Four Satellites Into Orbit For Globalstar

  • NASA Satellites Watch as China Constructs Giant Dam
  • Kalam Calls For Development Of Satellite Systems For Entire Humanity
  • Boeing Launches Italian Earth Observation Satellite
  • Envisat Captures First Image Of Sargassum From Space

  • The Dwarf Planet Known As Eris Is More Massive Than Pluto
  • Full Set Of Jupiter Close-Approach Data Reaches Home
  • A Goofball Called Pluto
  • First Observation Of A Uranian Mutual Event

  • Spitzer Nets Thousands Of Galaxies In A Giant Cluster
  • A Team Of Astronomers Identifies The Most Massive Star Ever
  • Chronicle Of A Death Foretold
  • Matter Flashed At Ultra Speed

  • Japan To Launch Lunar Orbiter On August 16
  • A Climate Monitoring Station On The Moon
  • No Plans To Join NASA Lunar Program Says Russian Space Agency
  • Oresme Crater Show Many Signs Of The Early Lunar Heavy Bombardment

  • Albertis Seeks Share In Galileo Partner Hispasat As Surrey Welcomes EU Support
  • EU Agrees Galileo Needs Public Bailout
  • EU To Back Galileo Bailout And But Faces Tough Talks On New Funds
  • Latest AeroAstro Asset Tracking Satellite Downlink Decoder Ready For Deployment

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement