. 24/7 Space News .
STELLAR CHEMISTRY
Canadian ingenuity crafts game-changing technology for CHIME telescope
by Staff Writers
Toronto, Canada (SPX) Sep 11, 2017


CHIME is a collaboration among 50 Canadian scientists from the University of British Columbia, the University of Toronto, McGill University, and the National Research Council of Canada (NRC). The $16-million investment for CHIME was provided by the Canada Foundation for Innovation and the governments of British Columbia, Ontario, and Quebec, with additional funding from the Natural Sciences and Engineering Research Council and the Canadian Institute for Advanced Research. The telescope is located in the mountains of British Columbia's Okanagan Valley at the NRC's Dominion Radio Astrophysical Observatory near Penticton. Image: Dr. Peter Klages

CHIME, a new revolutionary Canadian radio telescope inaugurated this past week in British Columbia, incorporates creative technology that will enable it to simultaneously tackle major astrophysics and cosmology topics - including studying the nature of "dark energy" by making unprecedented maps of the distant Universe, and determining the origin of the mysterious phenomenon known as Fast Radio Bursts.

Unlike traditional telescopes, CHIME (short for the Canadian Hydrogen Intensity Mapping Experiment) has no moving parts. The telescope, produced by 50 scientists from the University of British Columbia, the University of Toronto, McGill University, and the National Research Council of Canada "sees" the radio sky in a novel way: It uses over a thousand antennas to record the information from all the radio waves falling across its surface.

The radio signals are converted to digital data at a rate of 13 terabits per second - comparable to the entire world's mobile data rate. This amount of information can't be stored, so it is processed in real time.

With these techniques, CHIME is able to digitally "point" anywhere within a wide stripe of sky overhead, making traditional telescope steering unnecessary. More importantly, it is able to look in many different directions simultaneously.

Low-cost, high-powered signal processing
The innovation that has led to CHIME was made possible by creative new technology developed at universities across Canada, allowing this telescope to be built with $16 million (Canadian) in federal and provincial funding - a fraction of the cost of other world-class radio telescopes.

At the heart of CHIME is a sophisticated digital network and signal-processing "brain," known as the correlator, where the massive amount of information from radio waves is processed into an image of the overhead sky.

The correlator developed by the team is unparalleled in the world in terms of raw networking and processing rate, and low cost. To achieve this, the team had to develop new, custom innovations integrated with market-driven commercial technologies.

"You can't just go out and buy the world's largest radio correlator", explains McGill University's Matt Dobbs, "it needs to be carefully developed by a team who knows the science objectives in detail and is able to engineer the technology."

In doing this, Dobbs explains, "we're building both a novel instrument and a team of experts in Canada with the know-how to innovate world-class scientific instruments. Working with the amazing team of engineers, postdocs and students who together have realized this project has been inspiring."

The custom-designed-and-built circuit boards convert radio signals detected by the antennas into digital data. They split these data into about a thousand different radio frequencies, much like a glass prism separates different colours of light. The data are then passed through a giant custom-built data network.

A supercomputer built from computer-gaming gear
The second crucial component of the CHIME correlator was built by assembling a huge array of Graphics Processor Units (GPUs) - technology driven by the computer gaming industry - into a specialized supercomputer built for this application.

By cleverly reprogramming the GPUs, researchers at the University of Toronto were able to use this supercomputer to construct cosmic sky maps while simultaneously enabling a sensitive search for Fast Radio Bursts.

"The University wondered why I was using grant money to buy so many gaming cards," laughs University of Toronto researcher Keith Vanderlinde.

"By building this supercomputer with commercially available GPUs, and developing a software that images the sky, we were able to build a world-leading, yet affordable, telescope. This lays the foundations for building even more powerful telescopes in the future."

CHIME's foundation is an array of four large cylinders resembling snow-board half-pipes, with total area equivalent to five hockey rinks. Each cylinder focuses radio waves onto a line of 256 radio antennas per cylinder that turn celestial signals into electrical signals.

"CHIME's radio signals are sent through custom-designed analog circuitry that is based on commercially available and inexpensive filters and amplifiers developed for the cell-phone industry, says University of British Columbia researcher Gary Hinshaw.

"With CHIME, we have made market forces work for game-changing scientific progress."

A search engine for Fast Radio Bursts
A sensitive instrument to detect Fast Radio Bursts is also being developed for CHIME. Consisting of 128 compute nodes, this instrument can search continually for fast radio transients in the entire area of sky viewable by CHIME. Sophisticated algorithms and software pipelines have been developed to sift through 130 billion bits of data per second in real time.

"By making smarter computer algorithms we have prepared CHIME to be the world's most efficient Fast Radio Burst search engine," says researcher Kendrick Smith of the Perimeter Institute, one of several other institutions contributing to the project.

CHIME, now in its commissioning phase in preparation for science operations, was built at the Dominion Radio Astrophysical Observatory (DRAO) near Penticton, B.C., with funding from the Canada Foundation for Innovation, the governments of British Columbia, Quebec and Ontario, and the Canadian Institute for Advanced Research.

Related Report
New Canadian telescope will map largest volume of space ever surveyed
A Canadian effort to build one of the most innovative radio telescopes in the world will open the universe to a new dimension of scientific study. The Honourable Kirsty Duncan, Minister of Science, has installed the final piece of this new radio telescope, which will act as a time machine allowing scientists to create a three-dimensional map of the universe extending deep into space and time.

The Canadian Hydrogen Intensity Mapping Experiment, known as CHIME, is an extraordinarily powerful new telescope. The unique "half-pipe" telescope design and advanced computing power will help scientists better understand the three frontiers of modern astronomy: the history of the universe, the nature of distant stars and the detection of gravitational waves.

By measuring the composition of dark energy, scientists will better understand the shape, structure and fate of the universe. In addition, CHIME will be a key instrument to study gravitational waves, the ripples in space-time that were only recently discovered, confirming the final piece of Einstein's theory of general relativity.

More information on CHIME can be found here

Backgrounder: Canadian Hydrogen Intensity Mapping Experiment

STELLAR CHEMISTRY
Chandra Peers Into a Nurturing Cloud
Boston MA (SPX) Jul 13, 2017
In the context of space, the term 'cloud' can mean something rather different from the fluffy white collections of water in the sky or a way to store data or process information. Giant molecular clouds are vast cosmic objects, composed primarily of hydrogen molecules and helium atoms, where new stars and planets are born. These clouds can contain more mass than a million Suns, and stretch across ... read more

Related Links
Dunlap Institute for Astronomy and Astrophysics
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Crewed Missions Beyond LEO

Three astronauts blast off for five-month ISS mission

NASA Offers Space Station as Catalyst for Discovery in Washington

Voyager Spacecraft: 40 Years of Solar System Discoveries

STELLAR CHEMISTRY
Rocket fever launches UB students to engineering competition in New Mexico

ArianeGroup to supply from Boeing satellite with new generation of electric propulsion

45th Space Wing carries out successful launch while Irma looms off coast

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

STELLAR CHEMISTRY
45 Kilometers on the Odometry for Opportunity

Discovery of boron on Mars adds to evidence for habitability

New tools for exploring the surface of Mars

NASA's Curiosity Mars Rover Climbing Toward Ridge Top

STELLAR CHEMISTRY
China, Russia to Have Smooth Space Cooperation, Says Expert

Kuaizhou-11 to send six satellites into space

Russia, China May Sign 5-Year Agreement on Joint Space Exploration

ESA and Chinese astronauts train together

STELLAR CHEMISTRY
India, Japan Set to Boost Space Cooperation

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Bids for government funding prove strong interest in LaunchUK

STELLAR CHEMISTRY
Two new satellites now operational to expand US space situational awareness

New microscopy method for quick and reliable 3-D imaging of curvilinear nanostructures

Chinese video site offers virtual escape from 'boring' reality

Molecules move faster near sticky surfaces

STELLAR CHEMISTRY
X-Rays Reveal Temperament of Possible Planet-Hosting Stars

Does the Organic Material of Comets Predate our Solar System?

X-rays Reveal Temperament of Possible Planet-hosting Stars

Could TRAPPIST-1's Seven Earth-size Planets Have Gas Giant Siblings

STELLAR CHEMISTRY
Jupiter's Auroras Present a Powerful Mystery

Pluto features given first official names

New Horizons Files Flight Plan for 2019 Flyby

Hibernation Over, New Horizons Continues Kuiper Belt Cruise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.