. | . |
Calculations predict unexpected disorder in the surface of polar materials by Staff Writers Tarragona, Spain (SPX) Nov 22, 2016
The small units that constitute materials are ordered in their surfaces. The knowledge of the surface structure allows scientists to predict their properties so they can be tuned to our needs. Nevertheless, reality is more complex. The group of Professor Nuria Lopez at ICIQ in Catalonia has found, through massive simulations, that in certain surfaces disorder is intrinsic and therefore the prediction of these surface properties is more complex. Calculations (more than 50000 simulations) were carried out on the Mare Nostrum supercomputer at the Barcelona Supercomputing Center. In this case, simulations are essential, since they allow the introduction of all the complexity in this type of systems. Fundamental examples of the role of disorder (or entropy) are also present in other areas of chemistry, physics and biology. In fact, our own brains are designed to recognize patterns and symmetries, thus making the understanding of disorder challenging. Now, the work published by ICIQ researchers details why and how atoms are ultimately ordered in polar surfaces. Based on the configurational entropy concept, scientists classified different surface rearrangements according to their stability. They have also demonstrated that these surfaces are dynamic and the rearrangements are interchangeable. The new terminations show different patterns on the materials surface, affecting their mechanical and catalytic properties and their properties as sensors. These properties are fundamental to decrease energy consumption and attain greener and sustainable processes towards a circular economy. "Entropic contributions enhance polarity compensation for CeO2(100) surfaces" M. Capdevila-Cortada and Nuria Lopez. Nat. Mater., 2016, DOI: 10.1038/NMAT4804
Related Links Institute of Chemical Research of Catalonia Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |