. 24/7 Space News .
CARBON WORLDS
CO2 can be turned into a valuable resource
by Staff Writers
Villigen, Switzerland (SPX) Nov 04, 2021

stock illustration only

In a new study, researchers from the Paul Scherrer Institute PSI show that CO2 electrolysis can not only be profitable, but can also contribute to climate protection. With this method, carbon dioxide is captured from the atmosphere or at the point of production, such as an industrial plant. An electrolysis cell then converts the gas for industrial use, such as in chemicals production. The study, published in the journal Renewable and Sustainable Energy Reviews, simulates the use of different cell designs on an industrial scale.

One of the biggest challenges of our time is how to reduce the concentration of carbon dioxide (CO2) and other greenhouse gases in the atmosphere. This is the only way to mitigate climate change. Rapid cuts in emissions produced by industry, transport and private households are not enough, however. To reach agreed climate targets on schedule, much of the research to date highlights the need to actively extract carbon dioxide from the atmosphere or capture it directly at its source, thus rendering it harmless.

An important question is what to do with this waste gas? One possibility is to physically lock it away. This already happens in carbon capture and storage (CSS) projects, where the CO2 is pumped into underground storage reservoirs, such as old natural gas fields or saline formations. Another option is to use carbon capture and utilisation (CCU) to convert the CO2 for use as a raw material, which can then serve directly as a refrigerant, fertiliser or fire-extinguishing agent. Its more profitable use, however, is as a raw material for other products.

Previous studies - including one published by PSI - have shown carbon monoxide (CO) and formic acid (HCOOH) to be particularly promising products, as they are very easy to manufacture from carbon dioxide using water and electrolysis. The resulting formic acid can be used as an antirheumatic in medicine, for example, or as a pickling and impregnating agent in the textile and leather industry. In a similar vein, carbon monoxide can serve as a reducing agent in iron ore smelting. Most importantly, however: it can be combined with hydrogen to produce synthetic fuels. Synfuels have a very promising future, as they are carbon neutral and can replace diesel, petrol and kerosene from fossil resources.

PSI is heavily engaged in research in this area: at the start of the year, it joined forces with the Swiss Federal Laboratories for Materials Science and Technology (Empa) to launch the SynFuels initiative, funded by the ETH board. PSI was also the lead institute in the government-sponsored Swiss Competence Center for Heat and Electricity Storage (SCCER). Both initiatives enabled the research of this current study.

The study investigated whether the electrolysis of CO2 to produce CO or HCOOH is commercially viable and whether it consumes more carbon dioxide than it generates itself through its energy needs. In other words: Can the process earn money and at the same time act as a CO2 sink to protect our climate?

Simulation for six different electrolysis plants
The research group around the study's lead author Bernhard Pribyl-Kranewitter - a PhD student with PSI's Electrochemistry Laboratory at the time - started by sifting through the scientific literature for data on the most efficient low-temperature electrolyser systems that produce CO and HCOOH. "We selected the four best designs for carbon monoxide production - including one developed in house and patented by PSI - as well as the two best designs for producing formic acid," Pribyl-Kranewitter explains.

Next, for the associated cell architectures the researchers constructed two virtual models of large-scale electrochemical plants for the production of both chemicals. "We have used extremely sophisticated simulation software to some extent, allowing us to replicate as realistically as possible the cells' performance on an industrial scale."

For their simulations, the researchers ran two different scenarios: the first was based on current technology and assumed a production volume of 75 tonnes of CO and HCOOH per day. The second optimistic scenario anticipated improvements in the technology over the coming years and advances in various key parameters and overall production. This simulation produced 100 tonnes per day. In both simulations, a lifespan of 25 years was assumed for the manufacturing plants.

The simulations showed that producing formic acid in microfluid cells on a profitable basis was possible in both scenarios. Nevertheless, the production process generates more CO2 than it consumes. This is mainly because of the comparatively high energy consumption: formic acid occurs as a liquid in solution with water and must be separated using an energy-intensive process before it can be used. At the same time, less carbon dioxide is needed for production than for the same amount of carbon monoxide.

The current electricity mix in the EU, with over half still coming from fossil fuels, produces 235 grammes of CO2 per kilowatt hour. The production of formic acid could only serve as a CO2 sink if this value is less than 137 g/kWh. Consequently, the percentage of renewables needs to be considerably higher before the electrolysis of CO2 to produce formic acid has a positive climate effect.

Carbon monoxide already a potential CO2 sink
When producing carbon monoxide in the alkaline cell systems typically used for this purpose, the value only has to be less than 346 g/kWh, because the product is in the form of a gas and can be easily separated. "So carbon monoxide production could already potentially serve as a CO2 sink," says project leader Thomas Justus Schmidt, Head of the PSI Research Division Energy and Environment. "And this rises in line with the increasing proportion of renewables in the electricity mix."

In the base-case scenario, however, it proved impossible to produce carbon monoxide on a profitable basis with any cell architecture, whereby the electrolysis cell developed at PSI showed the most potential here. In the optimistic scenario, on the other hand, all four architectures produced a positive result, with the PSI version even outperforming one of the cells for producing formic acid.

"Even if these results are already encouraging, there is still a way to go before we can exploit the full commercial potential of our cell architecture," says Pribyl-Kranewitter. The researchers also hope they will be able to reduce the costs for catalysts and membranes.

"The results of the study are very promising," Professor Schmidt stresses. In the optimistic scenario, carbon monoxide production showed a 22 percent greater improvement on average compared with the production of formic acid. In other words, if the technology continues to develop and prices drop as expected, carbon monoxide definitely has the most potential for the profitable and eco-friendly use of carbon dioxide.

"Production based on this method can make a significant contribution to the energy transition, as it is a negative emissions technology," Schmidt says. The market for carbon monoxide is also much bigger than for formic acid. Global carbon monoxide production in 2015 was 210 gigatons, compared with just 0.76 megatons of HCOOH in 2019 - a mere fraction. "So we should concentrate on the further development of CO2 electrolysis for producing carbon monoxide," Schmidt recommends. "And then explore formic acid as an alternative."

Research Report: "Influence of low-temperature electrolyser design on economic and environmental potential of CO and HCOOH production: a techno-economic assessment"


Related Links
Paul Scherrer Institute
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Urgent action needed to reduce uncertainty on CO2 storage prospects
Princeton NJ (SPX) Nov 03, 2021
An urgent increase in policy support and investment for carbon capture and storage (CCS) is needed to achieve the Paris climate goals, according to researchers at Princeton University and The University of Queensland. The researchers said investment must be directed to understand how quickly CO2 can be injected and stored underground at a local /regional level. The study's lead author, Joe Lane, a former postdoctoral research associate in the Andlinger Center for Energy and the Environment, said C ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
New roles, combined offices for NASA Administrator Leadership Team

NASA, SpaceX delay ISS mission again for medical issue

Making space travel inclusive for all

Russia will fly four tourists into space in 2024

CARBON WORLDS
NASA, SpaceX reschedule Crew-3 launch due to weather

Kuaizhou lifts off successfully, places satellite in orbit

NASA seeks input to position mega-rocket for long-term exploration

Crew-3 astronauts launch to Space Station alongside microgravity research

CARBON WORLDS
Ingenuity Mars Helicopter Flight 14 Successful

You can help train NASA's rovers to better explore Mars

NASA Mars Rover and Helicopter models to go on national tour

China's Mars orbiter resumes communications with Earth

CARBON WORLDS
Chinese astronauts arrive at space station for longest mission

China's longest-yet crewed space mission impressive, expert says

Chinese astronaut bridges gender gap

Test conducted to verify spacecraft technology, FM says

CARBON WORLDS
Geraldine Naja, Director of Commercialisation, Industry and Procurement

Amazon to launch two Project Kuiper satellites next fall

NEOM Tech and Digital Holding Company and OneWeb sign $200m JV for satellite network

Verizon to use Amazon satellites for broadband Internet in rural areas

CARBON WORLDS
Shape-shifting materials with infinite possibilities

Smart material switches between heating and cooling in minutes

An artificial material that can sense, adapt to its environment

Securing data transfers with relativity

CARBON WORLDS
Key role of the reactor surface in Miller's experiment on the molecular origin of life

Scientists measure the atmosphere of a planet 340 light-years away

The upside-down orbits of a multi-planetary system

Searching for Earth 2 zoom in on a star

CARBON WORLDS
Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones

Scientists find strange black 'superionic ice' that could exist inside other planets

Jupiter's Great Red Spot is deeper than thought, shaped like lens









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.