. 24/7 Space News .
CHIP TECH
Breakthrough quantum-dot transistors create a flexible alternative to conventional electronics
by Staff Writers
Los Alamos NM (SPX) Nov 02, 2020

By depositing gold (Au) and Indium (In) contacts, researchers create two crucial types of quantum dot transistors on the same substrate, opening the door to a host of innovative electronics.

Researchers at Los Alamos National Laboratory and their collaborators from the University of California, Irvine have created fundamental electronic building blocks out of tiny structures known as quantum dots and used them to assemble functional logic circuits.

The innovation promises a cheaper and manufacturing-friendly approach to complex electronic devices that can be fabricated in a chemistry laboratory via simple, solution-based techniques, and offer long-sought components for a host of innovative devices.

"Potential applications of the new approach to electronic devices based on non-toxic quantum dots include printable circuits, flexible displays, lab-on-a-chip diagnostics, wearable devices, medical testing, smart implants, and biometrics," said Victor Klimov, a physicist specializing in semiconductor nanocrystals at Los Alamos and lead author on a paper announcing the new results in the October 19 issue of Nature Communications.

For decades, microelectronics has relied on extra-high purity silicon processed in a specially created clean-room environment. Recently, silicon-based microelectronics has been challenged by several alternative technologies that allow for fabricating complex electronic circuits outside a clean room, via inexpensive, readily accessible chemical techniques.

Colloidal semiconductor nanoparticles made with chemistry methods in much less stringent environments are one such emerging technology. Due to their small size and unique properties directly controlled by quantum mechanics, these particles are dubbed quantum dots.

A colloidal quantum dot consists of a semiconductor core covered with organic molecules. As a result of this hybrid nature, they combine the advantages of well-understood traditional semiconductors with the chemical versatility of molecular systems.

These properties are attractive for realizing new types of flexible electronic circuits that could be printed onto virtually any surface including plastic, paper, and even human skin. This capability could benefit numerous areas including consumer electronics, security, digital signage and medical diagnostics.

A key element of electronic circuitry is a transistor that acts as a switch of electrical current activated by applied voltage. Usually transistors come in pairs of n- and p-type devices that control flows of negative and positive electrical charges, respectively. Such pairs of complementary transistors are the cornerstone of the modern CMOS (complementary metal oxide semiconductor) technology, which enables microprocessors, memory chips, image sensors and other electronic devices.

The first quantum dot transistors were demonstrated almost two decades ago. However, integrating complementary n- and p-type devices within the same quantum dot layer remained a long-standing challenge. In addition, most of the efforts in this area have focused on nanocrystals based on lead and cadmium. These elements are highly toxic heavy metals, which greatly limits practical utility of the demonstrated devices.

The team of Los Alamos researchers and their collaborators from the University of California, Irvine have demonstrated that by using copper indium selenide (CuInSe2) quantum dots devoid of heavy metals they were able to address both the problem of toxicity and simultaneously achieve straightforward integration of n- and p-transistors in the same quantum dot layer. As a proof of practical utility of the developed approach, they created functional circuits that performed logical operations.

The innovation that Klimov and colleagues are presenting in their new paper allows them to define p- and n-type transistors by applying two different types of metal contacts (gold and indium, respectively). They completed the devices by depositing a common quantum dot layer on top of the pre-patterned contacts. "This approach permits straightforward integration of an arbitrary number of complementary p- and n-type transistors into the same quantum dot layer prepared as a continuous, un-patterned film via standard spin-coating," said Klimov.

Research Report: "Solution-processable integrated CMOS circuits based on colloidal CuInSe2 quantum dots"


Related Links
Los Alamos National Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
AMD buys computer chip rival Xilinx for $35 billion
New York (AFP) Oct 27, 2020
Advanced Micro Devices said Tuesday it had struck a deal to buy computer chipmaking rival Xilinx in a $35 billion megadeal that consolidates the sector which is being transformed by the global pandemic. The tie-up will help AMD ramp up its challenge to Intel for personal computer chips and broaden its portfolio to products for data centers, industrial systems and other sectors. "The combination will create the industry's leading high performance computing company, significantly expanding the bre ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
China pushes domestic economy, tech power in five-year plan

NASA to commercialize Near-Earth communications services

Designer of Failed Oxygen Supply System on Russian Side of ISS Rules Out Production Defect

Three-man US-Russian crew returns to Earth from ISS

CHIP TECH
Defense Dept taps Texas A and M system to lead US consortium for hypersonic systems

UB awarded $8.5 million to improve 'hybrid' space rockets

NASA refueling mission completes second set of robotic tool operations in space

Shetland spaceport boosts UK's plans for launch

CHIP TECH
Sensors on Mars 2020 Spacecraft Answer Long-Distance Call From Earth

Leonardo at work on robotic arms for the NASA and ESA Mars Sample Return mission

Perseverance rover bringing 3D-printed metal parts to Mars

NASA InSight's 'Mole' is out of sight

CHIP TECH
China Focus: 18 reserve astronauts selected for China's manned space program

State-owned space giant prepares for giant step in space

China's Xichang launch center to carry out 10 missions by end of March

Eighteen new astronauts chosen for China's space station mission

CHIP TECH
Globalsat Group successfully tests Iridium Edge Pro

SpaceX launches public beta test of Starlink Internet service

SpaceX launches cluster of Starlink satellites

ESA and GomSpace Luxembourg sign contract for continued constellation management development

CHIP TECH
Concrete structure's lifespan extended by a carbon textile

Microsoft rides cloud to higher earnings

Researchers break magnetic memory speed record

NorthStar building world's first satellite constellation to combat imminent threat of space collisions

CHIP TECH
Smile, wave: Some exoplanets may be able to see us, too

AI and photonics join forces to make it easier to find 'new Earths'

Microbial diversity below seafloor is as rich as on Earth's surface

Two Planets Around a Red Dwarf

CHIP TECH
Lighting a Path to Find Planet Nine

The mountains of Pluto are snowcapped, but not for the same reasons as on Earth

Arrokoth: Flattening of a snowman

SwRI study describes discovery of close binary trans-Neptunian object









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.