. 24/7 Space News .
TIME AND SPACE
Breakthrough extends quantum state stability by 10,000 times
by Brooks Hays
Washington DC (UPI) Aug 14, 2020

stock illustration only

Scientists in Chicago have developed a way to keep quantum states operating for longer periods of time -- a breakthrough they say could accelerate the development of quantum communication, computing and sensing.

Hundreds of studies have hinted at the power of quantum mechanics, and scientists have predicted quantum technologies will provide a speed boost to computers, beef up cyber security, enhance the resolution of astronomical images and more.

For now, however, these applications remain relegated to the realm of theory. While scientists have successfully created quantum systems, they have proven delicate, unstable and frequently finicky.

One of the challenges of building useful quantum technologies is that most quantum systems remain operational, or "coherent," for extremely brief periods of time, scientists say.

But, according to a study published this week in the journal Science, researchers at the University of Chicago claim to have developed a tweak that helps quantum states work 10,000 times longer than before.

"This breakthrough lays the groundwork for exciting new avenues of research in quantum science," study author David Awschalom said in a news release.

"The broad applicability of this discovery, coupled with a remarkably simple implementation, allows this robust coherence to impact many aspects of quantum engineering," said Awschalom, director of the Chicago Quantum Exchange. "It enables new research opportunities previously thought impractical."

Quantum systems involve the storage and movement of information that is governed by quantum mechanics -- the physics that describes the behavior of atomic particles.

Because quantum systems and states are so delicate -- easily disturbed by background vibrations, temperature changes and interfering electromagnetic fields -- they need extremely quiet, stable spaces to operate.

Traditional solutions to this problem, like physically isolating quantum states or using only extremely pure materials, are complex, expensive and impractical.

"With [our] approach, we don't try to eliminate noise in the surroundings; instead, we 'trick' the system into thinking it doesn't experience the noise," said postdoctoral researcher Kevin Miao.

In the lab, researchers exposed their quantum system to electromagnetic pulses, which are normally used to influence the system, as well as a continuous alternating magnetic field. The team of physicists was able to tune the magnetic field to the rapid rotation of the electron spins inside their quantum system, causing the system to "tune out" interfering noise.

"To get a sense of the principle, it's like sitting on a merry-go-round with people yelling all around you," Miao said. "When the ride is still, you can hear them perfectly, but if you're rapidly spinning, the noise blurs into a background."

The trick kept the quantum system operational for a total of 22 milliseconds, four orders of magnitude greater than if the quantum system was left unshielded. Researchers used the same technique to tune out temperature fluctuations, physical vibrations and electromagnetic noise.

"This approach creates a pathway to scalability," said Awschalom. "It should make storing quantum information in electron spin practical. Extended storage times will enable more complex operations in quantum computers and allow quantum information transmitted from spin-based devices to travel longer distances in networks."

Researchers claim their method is relatively easy to execute, and that it could be used to reevaluate various quantum systems that were prematurely cast aside because they couldn't achieve long-lasting coherence.


Related Links
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Physicists cast doubt on neutrino theory
Cincinnati OH (SPX) Aug 12, 2020
University of Cincinnati physicists, as part of an international research team, are raising doubts about the existence of an exotic subatomic particle that failed to show up in twin experiments. UC College of Arts and Sciences associate professor Alexandre Sousa and assistant professor Adam Aurisano took part in an experiment at the Fermi National Accelerator Laboratory in search of sterile neutrinos, a suspected fourth "flavor" of neutrino that would join the ranks of muon, tau and electron neutr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Moonstruck 'aroma sculptor' builds scent from space

A QandA on the Demo-2 mission

Power, bones, bubbles and other Weightless action on the Space Station

Roscosmos teases names of next year's ISS tourist group flight

TIME AND SPACE
NASA begins installing orion adapter for first Aartemis lunar flight

NASA, SpaceX targeting October for next astronaut launch

Ariane 5's third launch of 2020

Aerojet Rocketdyne to provide ULA's Vulcan Centaur Key Propulsion for future Air Force Launch Services

TIME AND SPACE
Ingenuity Mars Helicopter recharges its batteries in flight

NASA scientists leverage carbon-measuring instrument for Mars studies

Rice researchers use InSight for deep Mars measurements

NASA's MAVEN observes Martian night sky pulsing in ultraviolet light

TIME AND SPACE
China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

From the Moon to Mars: China's long march in space

Tianwen 1 probe to soon blast off for Mars

TIME AND SPACE
SIA urges FCC to ensure spectrum continues to provide satellite broadband connectivity

Exolaunch awarded contracts to deliver Swarm Satellites into orbit on Falcon 9

SES selects SpaceX for launch of new C-Band satellites

SES selects ULA to launch two C-Band satellites to accelerate C-Band clearing

TIME AND SPACE
'FreeFortnite' tournament taunts Apple amid legal battle

A bit of gold grants crystals new electric properties

New Flight Simulator game takes off with French studio in cockpit

Altius Space Machines to support on-orbit servicing for the Dynetics Human Landing System

TIME AND SPACE
Microbes in the seabed survive on little energy

NASA's planet hunter completes its primary mission

Lava oceans may not explain the brightness of some hot super-Earths

Hubble uses Earth as a Proxy for identifying oxygen on exoplanets

TIME AND SPACE
Ganymede covered by giant crater

Huge ring-like structure on Ganymede's surface may have been caused by violent impact

Inside the ice giants of space

Ammonia sparks unexpected, exotic lightning on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.