24/7 Space News
TECH SPACE
Breaking the One Part-One Material Paradigm
illustration only
Breaking the One Part-One Material Paradigm
by Staff Writers
Washington DC (SPX) Mar 23, 2023

In traditional design and manufacturing of planes, ships, vehicles, and other engineered structures, every part or individual component is typically constructed from a single material. This "one part-one material" constraint can lead to vulnerabilities when highly engineered components experience different local forces or environments in service. Material selection in these situations is usually a compromise. Material will be optimal for a particular location but leaves other physical regions of a part exposed to potential failure or requires a critical material to be carried throughout an entire part when it may only be needed in a specific location.

DARPA's METALS program, short for Multiobjective Engineering and Testing of ALloy Structures, aims to fundamentally disrupt how material is considered in the design process. The goal is to develop technologies that enable material composition and microstructure to be used as continuous variables that designers could tailor across a single part, enhancing thermal, structural, or functional properties precisely where needed.

"Material is treated as a discrete, fixed input in the design process today," said Andrew Detor, METALS program manager in DARPA's Defense Sciences Office. "We want to make material itself a design variable that can be optimized alongside component shape. If we're successful, this approach would vastly increase the design space and potentially lead to breakthroughs in system-level performance, cost, and sustainability."

A recent example of material stress affecting a military system is sand erosion of rotor blades on U.S. military helicopters that operated in desert environments in the Middle East and Central Asia over the past 20 years. Constantly blowing sand erodes blade materials, requiring more frequent blade inspections and ad hoc approaches to protect rotor blades from sand damage.

"One of the attempted solutions to this problem was to apply erosion-resistant coatings on the rotor blades," Detor said. "It was a sort of Band-Aid approach, but they had to address the problem as best they could. Where a METALS capability could step in would be to design a rotor blade with tailored material properties where you have an erosion-resistant leading edge, but then transition toward the trailing edge to a lighter weight structure to optimize lift and minimize drag."

Similar examples apply to jet engine turbine blades and disks on commercial and military fixed wing aircraft, where hot corrosion, thermomechanical fatigue, and other stresses affect different areas of the jet engine. Enabling novel blade and disk designs that vary material properties across the components could reduce inspection requirements and maintenance frequency and extend service life.

The METALS program comprises two technical areas: Novel material testing methods and material-integrated design optimization.

"The way that we test materials to determine their mechanical properties today can be traced back to Leonardo da Vinci and a series of experiments he conducted in 1493," Detor said. "He would test the strength of metal wires by tying one end to a fixed bar and the other end to a basket that he would fill with sand. He then recorded how much sand it took to break the wire. Instead of sand, today we use actuators and more advanced diagnostics - like strain gauges and extensometers - to understand how a material behaves and at what point it will fail.

"But it's basically the same concept da Vinci used. So material testing is ready for disruption. On the METALS program we will be opening the aperture to allow for many different material compositions and microstructures to be used throughput a part, so it's critically important that we develop new methods to quickly test these materials to get the properties that we need to characterize and ensure their performance."

The second focus area will address new ways to integrate material explicitly into the design process.

"Today we're very good at optimizing shape because we have engineering models that can simulate a number of different disciplines related to shape design," Detor said. "We can simulate solid mechanics, fluid dynamics, aerodynamics, heat transfer, and controls. But we've never been able to include material itself as an explicit variable in the design process. On METALS, we will explore new ways to bring material into design, overcoming what has historically been a fragile connection between these two disciplines."

METALS proposers may choose between one of two challenge problems for developing optimized continuum material designs: a turbine blisk (short for bladed disk) used in jet and rocket engine systems or an impeller used for marine applications and pumps.

The program schedule includes a 24-month first phase with two 12-month optional phases.

A Broad Agency Announcement solicitation with all program details and instructions for submitting proposals is available on SAM.gov at this link: https://sam.gov/opp/42e0032cb0d746e790eafc26fe832d05/view

Related Links
Defense Advanced Research Projects Agency
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TECH SPACE
Exploring the nanoworld of biogenic gems
Boston MA (SPX) Mar 21, 2023
A new research collaboration with The Bahrain Institute for Pearls and Gemstones (DANAT) will seek to develop advanced characterization tools for the analysis of the properties of pearls and to explore technologies to assign unique identifiers to individual pearls. The three-year project will be led by Admir Masic, associate professor of civil and environmental engineering, in collaboration with Vladimir Bulovic, the Fariborz Maseeh Chair in Emerging Technology and professor of electrical engineer ... read more

TECH SPACE
Russia's only female cosmonaut praises ISS mission

Virgin Orbit suspends operations, in wake of failed orbital launch

SpaceX cargo resupply mission CRS-27 scheduled for launch Tuesday

NASA SpaceX Crew-5 splashes down after 5-month mission

TECH SPACE
Rocket Lab launches 35th Electron 7 days after previous launch

SpaceX launches 56 Starlink satellites from Florida

First 3D-printed rocket lifts off but fails to reach orbit

Relativity Space's 3D-printed rocket fails to reach orbit

TECH SPACE
Spring Past the Marker Band: Sols 3776-3777

Geologists Love a Good Contact: Sols 3773-3775

Waves and a Rock: Sols 3778-3779

Toodle-oo Tapo Caparo: Sols 3771-3772

TECH SPACE
China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

TECH SPACE
Lynk selects Dawn Aerospace propulsion following an extensive industry trade study

ISRO's LVM3 launches 36 OneWeb satellites in sixth consecutive flight

Inmarsat and RBC Signals complete live testing of dynamic spectrum leasing solution

TDGA secures New Media Holding as lead investor in $20M seed round for Space Media

TECH SPACE
Breaking the One Part-One Material Paradigm

Neuraspace introduces "Machine Learning Prediction Plots" for earlier debris planning

Metaspectral Selected to join leading Australian Space Program

Artist Karla Ortiz sees AI 'identity theft', not promise

TECH SPACE
Researchers detect silicate clouds, methane, water, carbon monoxide on distant planet

Searching for life with space dust

Webb Telescope spots swirling, gritty clouds on remote planet in spectrum data

Scientists have new tool to estimate how much water might be hidden beneath a planet's surface

TECH SPACE
New Horizons team discusses discoveries from the Kuiper Belt

New Horizons team adds AI to Kuiper Belt Object search

Study finds ocean currents may affect rotation of Europa's icy crust

Inspiring mocktail menu served up by Space Juice winners

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.