Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Bioplastic -- greener than ever
by Staff Writers
Zurich, Switzerland (SPX) Dec 04, 2014


Crude biodiesel contains substantial amounts of glycerol (dark phase), which in turn can be used to produce bioplastic. Image courtesy Bo Cheng / ETH Zurich.

Plastic waste is one of today's major environmental concerns. Most types of plastic do not biodegrade but break up into ever smaller pieces while remaining a polymer. Also, most types are made from oil, a rapidly dwindling resource. But there are promising alternatives, and one of them is polylactic acid (PLA): it is biodegradable and made from renewable resources.

Manufacturers use PLA for disposable cups, bags and other sorts of packaging. The demand for PLA is constantly rising and has been estimated to reach about one megaton per year by 2020.

The research groups of ETH professors Konrad Hungerbuhler and Javier Perez-Ramirez at the Institute for Chemical and Bioengineering are now introducing a new method to produce lactic acid.

The process is more productive, cost-effective and climate-friendly than sugar fermentation, which is the technology currently used to produce lactic acid. The new method's greatest advantage is that it makes use of a waste feedstock: glycerol.

Waste product of biofuel manufacturing
Glycerol is a by-product in the manufacturing of first-generation biofuels and as such is not high-grade but contains residues of ash and methanol. "Nobody knows what to do with this amount of waste glycerol", says Merten Morales, a PhD student in the Safety and Environmental Technology group of professor Hungerbuhler.

This waste substance is becoming more and more abundant, with 3 megatons in 2014 expected to increase to over 4 megatons by 2020. Because of its impurity, glycerol is not suitable for the chemical or pharmaceutical industry. Moreover, it does not burn well and is thus not a good energy source.

"Normally, it should go through waste water treatment, but to save money and because it is not very toxic, some companies dispose of it in rivers or feed it to livestock. But there are concerns about how this affects the animals."

Making use of this waste feedstock by converting it into lactic acid already constitutes an advantage that makes the new method more eco-friendly. In this procedure, glycerol is first converted enzymatically to an intermediate called dihydroxyacetone, which is further processed to produce lactic acid by means of a heterogeneous catalyst.

High-performance catalyst
The researchers of the Advanced Catalysis Engineering group of professor Perez-Ramirez designed a catalyst with high reactivity and a long life span. It consists of a microporous mineral, a zeolite, whose structure facilitates chemical reactions within the pores. The close collaboration between the two research groups allowed the catalyst to be improved step by step while at the same time performing the life cycle assessment of the procedure as a whole.

"Without the assessment and comparison with the conventional method, we might have been happy with an initial catalyst design used for our study, which turned out to be less eco-friendly than fermentation", explains Pierre Dapsens, a PhD student in the Perez-Ramirez group. By improving several aspects of the catalyst design, the researchers were finally able to surpass sugar fermentation both from an environmental and an economic point of view.

Industrial processes are often turned "sustainable" simply by switching to a renewable resource.

"However, taking the whole process into account - from the source of the feedstock to the final product and including waste management - you will often find that a supposedly sustainable production method is not necessarily more sustainable than the conventional one", adds Cecilia Mondelli, a senior scientist in the Advanced Catalysis Engineering group who is also involved in the study.

A third less CO2
Taking into account the energy saved by using the waste feedstock glycerol and the improved productivity, the new procedure reduces the overall CO2 emission by 30 per cent compared to fermentation: per kilogram of lactic acid produced, 6 kilograms of CO2 are emitted with the new method compared to 7.5 kilograms with the conventional technology. Also, by lowering the overall cost of the process, the researchers calculated a 17-foldincrease of the profit possible by using the new process.

"Our calculations are even rather conservative", says Morales. "We assumed a glycerol feedstock of relatively good quality. But it also works with low-quality glycerol, which is even cheaper." Thus, manufacturers could increase their profit even further.

"Although today's major bioplastic companies are based in the US, the process is relatively simple and could be implemented in other countries that produce biofuel and the by-product glycerol", concludes Dapsens.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ETH Zurich
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
MatSE researchers develop inexpensive hydrolyzable polymer
Champaign IL (SPX) Dec 03, 2014
Researchers at the University of Illinois at Urbana-Champaign have figured out how to reverse the characteristics of a key bonding material-polyurea-providing an inexpensive alternative for a broad number of applications, such as drug delivery, tissue engineering, and packaging. "Polymers with transient stability in aqueous solution, also known as hydrolyzable polymers, have been applied i ... read more


TECH SPACE
Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

Young Volcanoes on the Moon

Russia Preparing Joint Moon Exploration Agreement With EU

TECH SPACE
Flash-Memory Reformat Planned

Mars mountain may have arisen from lake sediments: NASA

Curiosity finds clues to how water helped shape Mars

China's ardor for a red planet

TECH SPACE
Lockheed Martin-built Orion takes first steps on deep space journey

UTC Aerospace Systems provides critical control systems for Orion

Orion Flight 'Milestone' in Obama's Space Policy: White House

Orion test sets stage for ESA service module

TECH SPACE
Service module of China's returned lunar orbiter reaches L2 point

China Launches Second Disaster Relief Satellite

China expects to introduce space law around 2020

China launches new remote sensing satellite

TECH SPACE
OPALS: Light Beams Let Data Rates Soar

ISS Enables Interplanetary Space Exploration

NASA's CATS Eyes Clouds, Smoke and Dust from the Space Station

3-D Printer Creates First Object in Space on ISS

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

ADS to provide key elements for Vega launcher

Ariane 5 delivers DIRECTV-14 and GSAT-16 to orbit

Europe to build new-generation Ariane 6 rocket

TECH SPACE
Finding infant earths and potential life just got easier

Queen's scientist leads study of 'Super-Earth'

Finding infant earths and potential life just got easier

'Mirage Earth' exoplanets may have burned away chances for life

TECH SPACE
Bioplastic -- greener than ever

Geckos are sticky without effort

Solid-state proteins maximize the intensity of fluorescent-protein-based lasers

Marie Curie gets advice from Albert Einstein in lost letter




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.