Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Geckos are sticky without effort
by Staff Writers
Riverside CA (SPX) Dec 04, 2014


This is a photo of a tokay gecko clinging to a vertical surface. Image courtesy Emily Kane.

Geckos, found in places with warm climates, have fascinated people for hundreds of years. Scientists have been especially intrigued by these lizards, and have studied a variety of features such as the adhesive toe pads on the underside of gecko feet with which geckos attach to surfaces with remarkable strength.

One unanswered question that has captivated researchers is: Is the strength of this adhesion determined by the gecko or is it somehow intrinsic to the adhesive system?

In other words, is this adhesion a result of the entire animal initiating it? Or is the adhesion fundamentally "passive," its strength resulting from the way just the toe pads work?

Biologists at the University of California, Riverside have now conducted experiments in the lab on live and dead geckos to determine the answer. Their experiments show, for the first time, that dead geckos can adhere with the exact same strength as living geckos.

Study results, appearing online in Biology Letters, could have applications in the field of robotics.

"With regards to geckos, being sticky doesn't require effort," said Timothy E. Higham, an assistant professor of biology, who conducted the research alongside William J. Stewart, a postdoctoral researcher inhis lab.

"We found that dead geckos maintain the ability to adhere with the same force as living animals, eliminating the idea that strong adhesion requires active control. Death affects neither the motion nor the posture of clinging gecko feet. We found no difference in the adhesive force or the motion of clinging digits between our before- and after-death experiments."

Higham explained that there have been suggestions in the literature for many years that gecko adhesion at the organismal, or whole-animal, level (where the intact animal initiates adhesion) requires an active component such as muscle activity to push the foot and toes onto the surface in order to enhance adhesion. This has, however, never been tested.

Higham and Stewart took on the challenge and tested the hypothesis. The researchers used a novel device involving a controlled pulling system. This device applies repeatable and steady-increasing pulling forces to the gecko foot in shear. Specifically, the device measures clings by pulling a gecko foot in a highly controlled manner along a vertical acrylic sheet while simultaneously recording shear adhesion with video cameras.

The experiments showed that the adhesive force or motion of a gecko foot when pulled along a vertical surface was similarly high and variable when the gecko was alive and immediately - within 30 minutes - after death.

Geckos can climb a variety of surfaces, including smooth glass. Their sticky toes have inspired climbing devices such as Spider-Man gloves. The toe pads on the underside of gecko feet contain tiny hair-like structures called setae. The setae adhere to contacted surfaces through frictional forces as well as forces between molecules, called van der Waals forces. These tiny structures are so strong that the setae on a single foot can support 20 times the gecko's body weight.

The controlled experiments the researchers performed are the first to show that dead animals maintain the ability to adhere with the same force as living animals. The results refute the notion that actions by a living gecko, such as muscle recruitment or neural activity, are required for gecko feet to generate forces.

"The idea that adhesion can be entirely passive could apply to many different kinds of adhesion," Higham said. "This is clearly a cost-effective way of remaining stationary in a habitat. For example, geckos could perch on a smooth vertical surface and sleep for the night - or day - without using any energy."

The new work suggests that the "active" component of gecko adhesion is actually a reduction of adhesion force when the gecko "hyperextends" its digits - that is, lifts them off the ground by curling up only the tips of the digits while the rest of the foot remains on the surface.

"We found that the dead animals were more likely to experience damage to their adhesive system, which suggests that the active control may actually prevent injury," Stewart aid. "In other words, when the forces become too high, the gecko likely releases the system using its muscles."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Riverside
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
MatSE researchers develop inexpensive hydrolyzable polymer
Champaign IL (SPX) Dec 03, 2014
Researchers at the University of Illinois at Urbana-Champaign have figured out how to reverse the characteristics of a key bonding material-polyurea-providing an inexpensive alternative for a broad number of applications, such as drug delivery, tissue engineering, and packaging. "Polymers with transient stability in aqueous solution, also known as hydrolyzable polymers, have been applied i ... read more


TECH SPACE
Carnegie Mellon Unveils Lunar Rover "Andy"

Why we should mine the moon

Young Volcanoes on the Moon

Russia Preparing Joint Moon Exploration Agreement With EU

TECH SPACE
Flash-Memory Reformat Planned

Mars mountain may have arisen from lake sediments: NASA

Curiosity finds clues to how water helped shape Mars

China's ardor for a red planet

TECH SPACE
Lockheed Martin-built Orion takes first steps on deep space journey

UTC Aerospace Systems provides critical control systems for Orion

Orion Flight 'Milestone' in Obama's Space Policy: White House

Orion test sets stage for ESA service module

TECH SPACE
Service module of China's returned lunar orbiter reaches L2 point

China Launches Second Disaster Relief Satellite

China expects to introduce space law around 2020

China launches new remote sensing satellite

TECH SPACE
OPALS: Light Beams Let Data Rates Soar

ISS Enables Interplanetary Space Exploration

NASA's CATS Eyes Clouds, Smoke and Dust from the Space Station

3-D Printer Creates First Object in Space on ISS

TECH SPACE
Soyuz Installed at Baikonur, Expected to Launch Wednesday

ADS to provide key elements for Vega launcher

Ariane 5 delivers DIRECTV-14 and GSAT-16 to orbit

Europe to build new-generation Ariane 6 rocket

TECH SPACE
Finding infant earths and potential life just got easier

Queen's scientist leads study of 'Super-Earth'

Finding infant earths and potential life just got easier

'Mirage Earth' exoplanets may have burned away chances for life

TECH SPACE
Geckos are sticky without effort

Solid-state proteins maximize the intensity of fluorescent-protein-based lasers

Marie Curie gets advice from Albert Einstein in lost letter

See it, touch it, feel it




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.