. | . |
Better way found to determine the integrity of metals by Staff Writers Waterloo, Canada (SPX) Aug 07, 2018
Researchers at the University of Waterloo have found a better way to identify atomic structures, an essential step in improving materials selection in the aviation, construction and automotive industries. The findings of the study could result in greater confidence when determining the integrity of metals. Devinder Kumar, a PhD candidate in systems design engineering at Waterloo, collaborated with the Fritz Haber Institute (FHI) in Berlin, to develop a powerful AI model that can accurately detect different atomic structures in metallic materials. The system can find imperfections in the metal that were previously undetectable. "Anywhere you have metals you want to know the consistency, and that can't be done in current practical scenarios because current methods fail to identify the symmetry in imperfect conditions," said Kumar, who is a member of the Vision and Image Processing Research Group under the supervision of Alexander Wong, a professor at Waterloo and Canada Research Chair in the area of artificial intelligence. "So, this new method of evaluating metallic material will lead to better material design overall and has the potential to affect all the industries where you need material designing properties." FHI came up with a new scenario that can artificially create data which relates to the real world. Kumar along with his collaborators was able to use this to generate about 80,000 images of the different kind of defects and displacements to produce a very effective AI model to identify various types of crystal structures in practical scenarios. This data has been released to the public so people can actually learn their own algorithms. "In theory, all metallic materials have perfect symmetry, and all the items are in the correct place, but in practice because of various reasons such as cheap manufacturing there are defects," Kumar said. "All these current methods fail when they try to match actual ideal structures, most of them fail when there is even one per cent defect." "We have made an AI-based algorithm or model that can classify these kinds of symmetries even up to 40 per cent of defect."
The study, Insightful classification of crystal structures using deep learning, was published recently in the journal Nature Communications
Root vegetables to help make new buildings stronger, greener Washington (UPI) Jul 27, 2018 In effort to make new construction greener and stronger, engineers and material scientists are turning to beets and carrots. Researchers have combined Portland cement with nanoplatelets extracted from root vegetable fibers to produce a stronger, more eco-friendly building material. "The composites are not only superior to current cement products in terms of mechanical and microstructure properties but also use smaller amounts of cement," lead researcher Mohamed Saafi from Lancaster University s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |