. 24/7 Space News .
ENERGY TECH
Battery 'dream technology' a step closer to reality with new discovery
by Staff Writers
Austin TX (SPX) Dec 06, 2021

A look at what can happen with an unstable electrolyte.

A sodium-sulfur battery created by engineers at The University of Texas at Austin solves one of the biggest hurdles that has held back the technology as a commercially viable alternative to the ubiquitous lithium-ion batteries that power everything from smartphones to electric vehicles.

Sodium and sulfur stand out as appealing materials for future battery production because they are cheaper and more widely available than materials such as lithium and cobalt, which also have environmental and human rights concerns. Because of this, researchers have worked for the past two decades to make room-temperature, sodium-based batteries viable.

"I call it a dream technology because sodium and sulfur are abundant, environmentally benign, and the lowest cost you think of," said Arumugam Manthiram, director of UT's Texas Materials Institute and professor in the Walker Department of Mechanical Engineering. "With expanded electrification and increased need for renewable energy storage going forward, cost and affordability will be the single dominant factor."

In one of two recent sodium battery advances from UT Austin, the researchers tweaked the makeup of the electrolyte, the liquid that facilitates movement of ions back and forth between the cathode and anode to stimulate charging and discharging of the batteries. They attacked the common problem in sodium batteries of the growth of needle-like structures, called dendrites, on the anode that can cause the battery to rapidly degrade, short circuit, and even catch fire or explode.

The researchers published their findings in a recent paper in the Journal of the American Chemical Society.

In previous electrolytes for sodium-sulfur batteries, the intermediate compounds formed from sulfur would dissolve in the liquid electrolyte and migrate between the two electrodes within the battery. This dynamic, known as shuttling, can lead to material loss, degradation of components, and dendrite formation.

The researchers created an electrolyte that prevents the sulfur from dissolving and thus solves the shuttling and dendrite problems. That enables a longer life cycle for the battery, showing a stable performance over 300 charge-discharge cycles.

"When you put a lot of sugar in water, it becomes syrupy. Not everything is dissolved away," said Amruth Bhargav, a doctoral student in Manthiram's lab. "Some things are half linked and half dissolved. In a battery, we want this in a half-dissolved state."

The new battery electrolyte was designed in a similar vein by diluting a concentrated salt solution with an inert, nonparticipating solvent, which preserves the "half-dissolved" state. The researchers found that such an electrolyte prevents the unwanted reactions at the electrodes and thus prolongs the life of the battery.

The price of lithium has skyrocketed during the past year, underscoring the need for alternatives. Lithium mining has been criticized for its environmental impacts, including heavy groundwater use, soil and water pollution, and carbon emissions. By comparison, sodium is available in the ocean, cheaper, and more environmentally friendly.

Lithium-ion batteries typically also use cobalt, which is expensive and mined mostly in Africa's Democratic Republic of the Congo, where it has significant impacts on human health and the environment. Last year, Manthiram demonstrated a cobalt-free lithium-ion battery.

The researchers plan to build on their breakthrough by testing it with larger batteries to see whether it can be applicable to technologies, such as electric vehicles and storage of renewable resources such as wind and solar.

Other authors on the paper include Texas Materials Institute postdoctoral fellows Jiarui He and Woochul Shin. The research was supported by grants from the U.S. Department of Energy's Office of Basic Energy Sciences, Division of Materials Science and Engineering.

Research Report: "Stable Dendrite-Free Sodium-Sulfur Batteries Enabled by a Localized High-Concentration Electrolyte"


Related Links
University of Texas at Austin
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Sodium-based material yields stable alternative to lithium-ion batteries
Austin TX (SPX) Dec 06, 2021
University of Texas at Austin researchers have created a new sodium-based battery material that is highly stable, capable of recharging as quickly as a traditional lithium-ion battery and able to pave the way toward delivering more energy than current battery technologies. For about a decade, scientists and engineers have been developing sodium batteries, which replace both lithium and cobalt used in current lithium-ion batteries with cheaper, more environmentally friendly sodium. Unfortunately, i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Leveraging AI to accelerate development of scientific models

NASA's latest astronaut trainees are already dreaming of the Moon

Russian rocket blasts off carrying Japanese billionaire to the ISS

Japanese billionaire arrives at ISS

ENERGY TECH
European space firm to build small, reusable launcher

NASA awards Artemis contract for future SLS boosters

Galileo launch postponed

Rocket Lab readies Electron for lift-off in fastest launch turnaround yet

ENERGY TECH
Rover escapes from sand trap

Ingenuity heading north into Seitah for Flight 17

ESA's Mars Express unravels mystery of martian moon using 'fake' flybys

Sols 3314-3315: Bountiful, Beautiful Boulders!

ENERGY TECH
First crew of space station provide a full update on China's progress

Milestone mission for China's first commercial rocket company

China to livestream first space class from Tiangong space station

Tianzhou cargo craft to help advance science

ENERGY TECH
Soon, 1 out of every 15 points of light in the sky will be a satellite

ESA moves forward with your ideas for 11 pioneering missions

Carrier rocket takes off from Sichuan province

ESA helps Greece to boost its space investments

ENERGY TECH
Technique enables real-time rendering of scenes in 3D

Researchers develop novel 3D printing technique to engineer biofilms

New 'Halo' game debuts as Xbox turns 20

Researchers team up to get a clearer picture of molten salts

ENERGY TECH
Airbus will build ESA's Ariel exoplanet satellite

Giant planets could reach "maturity" much earlier than previously thought

Bolstering planetary biosecurity in an era of space exploration

Discovery Alert: 172 Possible Planets? A New Roadmap to Distant Worlds

ENERGY TECH
Planet decision that booted out Pluto is rooted in folklore, astrology

Are Water Plumes Spraying from Europa

Science results offer first 3D view of Jupiter's atmosphere

Juno peers deep into Jupiter's colorful belts and zones









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.