. | . |
Bacteria, electrons spin in similar patterns by Staff Writers Boston MA (SPX) Jan 07, 2016
There are certain universal patterns in nature that hold true, regardless of objects' size, species, or surroundings. Take, for instance, the branching fractals seen in both tree limbs and blood vessels, or the surprisingly similar spirals in mollusks and cabbage. Now scientists at MIT and Cambridge University have identified an unexpected shared pattern in the collective movement of bacteria and electrons: As billions of bacteria stream through a microfluidic lattice, they synchronize and swim in patterns similar to those of electrons orbiting around atomic nuclei in a magnetic material. The researchers found that by tuning certain dimensions of the microfluidic lattice, they were able to direct billions of microbes to align and swim in the same direction, much the way electrons circulate in the same direction when they create a magnetic field. With slight changes to the lattice, groups of bacteria flowed in opposite directions, resembling electrons in a nonmagnetic material. Surprisingly, the researchers also identified a mathematical model that applies to the motions of both bacteria and electrons. The model derives from a general lattice field theory, which is typically used to describe the quantum behavior of electrons in magnetic and electronic materials. The researchers reduced this complex model to a much simpler, "textbook" model, which predicts that a phase transition, or a change in flow direction, should occur with certain changes to a lattice's dimensions - a transition that the team observed in their experiments with bacteria. "It's very surprising that we see this universality," says Jorn Dunkel, assistant professor of applied mathematics at MIT. "The really nice thing is, you have a living system here that shows all these behaviors that people think are also going on in quantum systems." Dunkel and his colleagues at Cambridge University - Hugo Wioland, Francis Woodhouse, and Raymond Goldstein '83 - published their results yesterday in the journal Nature Physics.
Guiding bacterial surfaces "We were generally interested in how microbes like bacteria interact with surfaces individually and collectively, and how might surfaces guide microorganisms," Dunkel says. In initial experiments, the researchers placed bacteria in progressively smaller pools, or wells, and observed their swimming patterns. In larger wells, the microbes tended to swim in relative disorder. In much smaller wells, measuring about 70 microns wide, thousands of bacteria began to behave in orderly way, swimming in a spiral, in the same direction within the well, for long periods of time.
Against the current Dunkel and his colleagues found that they were able to manipulate the bacteria's flow by changing one key dimension: the diameter of the connecting channels, or what they call gap size. If the gap was too small, bacteria in one well would spiral in the opposite direction from their neighbors in the adjacent well, like the alternating circulation of electrons in a nonmagnetic material. If, however, the gap size was 8 microns or larger, the researchers observed a phase transition, in which bacteria in every well synchronized, flowing in the same direction, like aligned electrons in a magnetic field. Examining this phase transition more closely, the researchers found that a larger gap size allows more bacteria to flow from one well to a neighboring well. This movement of bacteria between wells creates an "edge current," or a flow of bacteria at the edges of each well, which in turn induces bacteria in the well's interior to flow against it. The overall result is that the majority of bacteria within each well flow in the same direction, opposite to the edge currents.
Modeling collective motion Applying the Ising model to their physical lattice, the researchers found that the model predicted a phase transition in response to a change in one parameter, which, in this case, turned out to be gap size. Dunkel and his colleagues found that the model predictions matched their experiments in a square lattice. The group also studied bacteria flowing through a triangular lattice - a repeating pattern of three interconnected wells - and found that, again, theoretical expectations matched observations. Going forward, Dunkel says he would like to explore bacterial flow in more random arrangements and environments. "In real porous medium like soil or tissue, you don't have this very even distribution of bacteria," Dunkel says. "So how is collective motion of bacteria controlled by randomness of the medium? That's the next bigger goal."
Related Links Massachusetts Institute of Technology Understanding Time and Space
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |