. 24/7 Space News .
TECH SPACE
Coulomb blockade in organic conductors found, a world first
by Staff Writers
Osaka, Japan (SPX) Jan 05, 2016


File image.

Generally, organic conductors has disorder structures so charge transfers from one place with high conductivity to another place with high conductivity. In such occasions, Coulomb blockade of charge transport takes place. It was thought that Coulomb blockade took place in low dimensional aggregates of inorganic particulates only at very low temperatures.

A research group of Osaka University succeeded in showing experimental evidence to prove Coulomb blockade taking place on two-dimensional organic conducting polymer films, a world first. They also demonstrated its theoretical evidence through quantum calculations and the verification of conductivity models of experimental results.

This group's research results will possibly overturn conventional understanding of conduction mechanism of organic conductors and help one to understand and design properties of organic and molecular devices.

Organic devices have grown remarkably. Among them, conductive polymers in particular are synthesized from inexpensive carbon-based low molecules, and their properties can be changed into metals, semiconductors, and insulators by changing their structure and doping to be used for various devices. Despite these diverse properties, electric conduction properties of organic conductors have not yet been fully understood and nonlinear conductivity at low temperatures has been a mystery.

Low temperature properties are very important in learning the essence of conduction. In organic materials, peculiar nonlinearity to current voltage, which is different from that of inorganics appears.

Many researchers have tried to explain the nonlinear conductivity, but a general and comprehensive explanation has not been achieved. Nonlinear conductivity has been considered one of the mysteries of organic condensed matter physics.

A group of researchers led by Megumi Akai-Kasaya, Assistant Professor, and Yuji Kuwahara, Professor, at Osaka University created a sheet of two-dimensional ultrathin-films of regularly arranged hexylthiophene (P3HT) monolayers and attached the sheet of about 1-nm monolayer to a metal electrode with a gap of less than a micrometer and measured electrical conductivity.

The current flowing in the molecular membrane showed the temperature-dependent threshold voltage in the low temperature range of 150K - 4K and increased in power law of the current-voltage beyond the threshold. This is a typical feature of Coulomb blockade.

This group theoretically verified the onset of two-dimensional Coulomb blockade in the organic thin film through the calculation of the delocalization of electric charge in the molecular film and the verification of a distribution model of conductive segment in the two-dimensional film.

It was considered that Coulomb blockades occurred only in low-dimensional aggregates of inorganic particulates at extremely low temperatures. This research is very important in that it clarified that Coulomb blockade occurred in organic conductors as well. Many organic conductors show that nonlinearity of conductivity occurs at nearly room temperature. This group's achievement suggests that in organic conductors, Coulomb blockade affects conductivity at room temperature as well.

This research was featured in Physical Review Letters on Nov. 4, 2015.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Osaka University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Japanese research team earns right to name Element 113
Wako, Japan (UPI) Jan 01, 2016
Whoever finds it, names it. It's sort of like the scientific equivalent of "finders keepers." But when it comes to atomic elements, it's not always clear who found it - or who found it first. On Thursday, the International Union of Pure and Applied Physics, or IUPAP, determined the research team from RIKEN in Japan discovered Element 113. Thus, physicist Kosuke Morita and his colleague ... read more


TECH SPACE
Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

TECH SPACE
NASA suspends March launch of InSight mission to Mars

University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

Opportunity positioned on steeper slopes for another Martian winter

TECH SPACE
Gadgets get smarter, friendlier at CES show

Astronauts Tour Future White Room, Crew Access Tower

ISRO's year in review 2015

Celebrity chefs create gourmet delights for astronauts

TECH SPACE
Chinese rover analyzes moon rocks: First new 'ground truth' in 40 years

Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

TECH SPACE
British astronaut dials wrong number on Xmas call from space

Space Station Receives New Space Tool to Help Locate Ammonia Leaks

Two whacks is all it takes for spacewalk repair

Unscheduled spacewalk likely on Monday

TECH SPACE
45th Space Wing launches ORBCOMM; historically lands first stage booster

SpaceX rocket landing opens 'new door' to space travel

NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

TECH SPACE
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

TECH SPACE
Transition metal catalyst prompts 'conjunctive' cross-coupling reaction

New technique offers strong, flawless 3-D printed ceramics

UCLA researchers create exceptionally strong and lightweight new metal

Japanese research team earns right to name Element 113









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.