24/7 Space News
EARTH OBSERVATION
Atmospheric observations in China show rise in emissions of a potent greenhouse gas
illustration only
Atmospheric observations in China show rise in emissions of a potent greenhouse gas
by Mark Dwortzan | MIT Science and Policy of Global Change
Boston MA (SPX) Apr 03, 2024

To achieve the aspirational goal of the Paris Agreement on climate change - limiting the increase in global average surface temperature to 1.5 degrees Celsius above preindustrial levels - will require its 196 signatories to dramatically reduce their greenhouse gas (GHG) emissions. Those greenhouse gases differ widely in their global warming potential (GWP), or ability to absorb radiative energy and thereby warm the Earth's surface. For example, measured over a 100-year period, the GWP of methane is about 28 times that of carbon dioxide (CO2), and the GWP of sulfur hexafluoride (SF6) is 24,300 times that of CO2, according to the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report.

Used primarily in high-voltage electrical switchgear in electric power grids, SF6 is one of the most potent greenhouse gases on Earth. In the 21st century, atmospheric concentrations of SF6 have risen sharply along with global electric power demand, threatening the world's efforts to stabilize the climate. This heightened demand for electric power is particularly pronounced in China, which has dominated the expansion of the global power industry in the past decade. Quantifying China's contribution to global SF6 emissions - and pinpointing its sources in the country - could lead that nation to implement new measures to reduce them, and thereby reduce, if not eliminate, an impediment to the Paris Agreement's aspirational goal.

To that end, a new study by researchers at the MIT Joint Program on the Science and Policy of Global Change, Fudan University, Peking University, University of Bristol, and Meteorological Observation Center of China Meteorological Administration determined total SF6 emissions in China over 2011-21 from atmospheric observations collected from nine stations within a Chinese network, including one station from the Advanced Global Atmospheric Gases Experiment (AGAGE) network. For comparison, global total emissions were determined from five globally distributed, relatively unpolluted "background" AGAGE stations, involving additional researchers from the Scripps Institution of Oceanography and CSIRO, Australia's National Science Agency.

The researchers found that SF6 emissions in China almost doubled from 2.6 gigagrams (Gg) per year in 2011, when they accounted for 34 percent of global SF6 emissions, to 5.1 Gg per year in 2021, when they accounted for 57 percent of global total SF6 emissions. This increase from China over the 10-year period - some of it emerging from the country's less-populated western regions - was larger than the global total SF6 emissions rise, highlighting the importance of lowering SF6 emissions from China in the future.

The open-access study, which appears in the journal Nature Communications, explores prospects for future SF6 emissions reduction in China.

"Adopting maintenance practices that minimize SF6 leakage rates or using SF6-free equipment or SF6 substitutes in the electric power grid will benefit greenhouse-gas mitigation in China," says Minde An, a postdoc at the MIT Center for Global Change Science (CGCS) and the study's lead author. "We see our findings as a first step in quantifying the problem and identifying how it can be addressed."

Emissions of SF6 are expected to last more than 1,000 years in the atmosphere, raising the stakes for policymakers in China and around the world.

"Any increase in SF6 emissions this century will effectively alter our planet's radiative budget - the balance between incoming energy from the sun and outgoing energy from the Earth - far beyond the multi-decadal time frame of current climate policies," says MIT Joint Program and CGCS Director Ronald Prinn, a coauthor of the study. "So it's imperative that China and all other nations take immediate action to reduce, and ultimately eliminate, their SF6 emissions."

The study was supported by the National Key Research and Development Program of China and Shanghai B&R Joint Laboratory Project, the U.S. National Aeronautics and Space Administration, and other funding agencies.

Research Report:"Sustained growth of sulfur hexafluoride emissions in China inferred from atmospheric observations"

Related Links
Joint Program on the Science and Policy of Global Change
Earth Observation News - Suppiliers, Technology and Application

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
EARTH OBSERVATION
Satellite Image Fusion enhances vegetation monitoring accuracy
Sydney, Australia (SPX) Apr 03, 2024
A recent study has leveraged the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Simultaneously generate Full-length normalized difference vegetation Index Time series (SSFIT) algorithms to overcome the challenges of cloud cover in satellite imagery. This marks a significant improvement in the accuracy of monitoring land surface phenology (LSP), providing essential data for environmental and agricultural management in the face of climate change. Monitoring the precise timin ... read more

EARTH OBSERVATION
Sandia fuels economy with $140 billion boost from tech innovations

Music of Space: An Ode to the Sonic Frontiers Beyond Earth

NASA and Boeing set new date for Starliner's first crewed mission

With 10 on board ISS crew gets to work

EARTH OBSERVATION
Starship's Third Launch: A Glimpse into the future of reusable launch vehicles

Lockheed Martin Ventures Backs Helicity Space for Fusion Propulsion Advancements

North Korea says it test-fired new solid-fuel hypersonic missile

Impulso Space inks deal with Relativity Space for comprehensive launch support

EARTH OBSERVATION
Continuing up the Channel: Sols 4139-4140

Perseverance Pays off When Studying the Martian Atmosphere

Fascinated by Fascination Turret: Sols 4137-4138

Mars Express achieves 25,000 orbits

EARTH OBSERVATION
Shenzhou 17 astronauts complete China's first in-space repair job

Tiangong Space Station's Solar Wings Restored After Spacewalk Repair by Shenzhou XVII Team

BIT advances microbiological research on Chinese Space Station

Chang'e 6 and new rockets highlight China's packed 2024 space agenda

EARTH OBSERVATION
Iridium acquires Satelles, Unveils enhanced time and location solutions

Eutelsat OneWeb approves Hughes' LEO satellite connectivity terminal

Expanding Horizons: Satcoms Innovation Group Introduces Four New Academic Affiliates

C-LEO Initiative launches with big funding boost for Constellations

EARTH OBSERVATION
A first-ever complete map for elastic strain engineering

EPC Space's new GaN Driver IC boosts space power systems

NESC identifies critical improvements for aerospace pressure vessel standards

NASA collects 'space debris' that crashed into Florida man's home

EARTH OBSERVATION
Unlocking the secrets of Earth's underground ecosystems

Webb Telescope unveils first glimpse into planetary formation

Webb opens new chapter in search for forming planets

ESA targets Enceladus in ambitious mission to Saturn

EARTH OBSERVATION
New study reveals potential "ice bombs" among Kuiper Belt Objects

Unlocking the Secrets of Eternal Ice in the Kuiper Belt

Hubble's Latest Gaze Reveals Jupiter's Dynamic Weather Patterns

NASA Armstrong Updates 1960s Concept to Study Giant Planets

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.