. 24/7 Space News .
Asymmetric Ashes - Astronomers Study Shape of Stellar Candles

A Type Ia supernova discovered in 2001. Photo: Ted Dobosz.
by Staff Writers
Garching, Germany (SPX) Nov 30, 2006
Astronomers are reporting remarkable new findings that shed light on a decade-long debate about one kind of supernova, the explosion that marks a star's final demise: does the star die in a slow burn or with a fast bang? From their observations, the scientists find that the matter ejected by the explosion shows significant peripheral asymmetry but a nearly spherical interior, most likely implying that the explosion finally propagates at supersonic speed.

These results are reported today in Science Express, the online version of the research journal Science, by Lifan Wang, Texas A and M University (USA), and colleagues Dietrich Baade and Ferdinando Patat from ESO.

"Our results strongly suggest a two-stage explosion process in this type of supernova," comments Wang. "This is an important finding with potential implications in cosmology."

Using observations of 17 supernovae made over more than 10 years with ESO's Very Large Telescope and the McDonald Observatory's Otto Struve Telescope, astronomers inferred the shape and structure of the debris cloud thrown out from Type Ia supernovae.

Such supernovae are thought to be the result of the explosion of a small and dense star - a white dwarf - inside a binary system. As its companion continuously spills matter onto the white dwarf, the white dwarf reaches a critical mass, leading to a fatal instability and the supernova. But what sparks the initial explosion, and how the blast travels through the star have long been thorny issues.

The supernovae Wang and his colleagues observed occurred in distant galaxies, and because of the vast cosmic distances could not be studied in detail using conventional imaging techniques, including interferometry. Instead, the team determined the shape of the exploding cocoons by recording the polarisation of the light from the dying stars.

Polarimetry relies on the fact that light is composed of electromagnetic waves that oscillate in certain directions. Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflected off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation. If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light.

This is what broad-band polarimetry can accomplish. If additional spectral information is available ('spectro-polarimetry'), one can determine whether the asymmetry is in the continuum light or in some spectral lines. In the case of the Type Ia supernovae, the astronomers found that the continuum polarisation is very small so that the overall shape of the explosion is crudely spherical. But the much larger polarization in strongly blue-shifted spectral lines evidences the presence, in the outer regions, of fast moving clumps with peculiar chemical composition.

"Our study reveals that explosions of Type Ia supernovae are really three-dimensional phenomena," says Dietrich Baade. "The outer regions of the blast cloud is asymmetric, with different materials found in 'clumps', while the inner regions are smooth."

"This study was possible because polarimetry could unfold its full strength thanks to the light-collecting power of the Very Large Telescope and the very precise calibration of the FORS instrument," he addss.

The research team first spotted this asymmetry in 2003, as part of the same observational campaign (ESO PR 23/03 and ESO PR Photo 26/05). The new, more extensive results show that the degree of polarisation and, hence, the asphericity, correlates with the intrinsic brightness of the explosion. The brighter the supernova, the smoother, or less clumpy, it is.

"This has some impact on the use of Type Ia supernovae as standard candles," says Ferdinando Patat. "This kind of supernovae is used to measure the rate of acceleration of the expansion of the Universe, assuming these objects behave in a uniform way. But asymmetries can introduce dispersions in the quantities observed."

"Our discovery puts strong constraints on any successful models of thermonuclear supernova explosions," adds Wang.

Models have suggested that the clumpiness is caused by a slow-burn process, called 'deflagration', and leaves an irregular trail of ashes. The smoothness of the inner regions of the exploding star implies that at a given stage, the deflagration gives way to a more violent process, a 'detonation', which travels at supersonic speeds - so fast that it erases all the asymmetries in the ashes left behind by the slower burning of the first stage, resulting in a smoother, more homogeneous residue.

Related Links
ESO
Texas A and M University
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Dark Matter Hides, Physicists Seek
Stanford CA (SPX) Dec 01, 2006
Scientists don't know what dark matter is, but they know it's all over the universe. Everything humans observe in the heavens-galaxies, stars, planets and the rest-makes up only 4 percent of the universe, scientists say. The remaining 96 percent is composed of dark matter and its even more mysterious sibling, dark energy.







  • Russia Will Develop Space Elevators
  • Russia To Sign Contract To Launch South Korean Astronaut Into Space
  • ETC Finishes Final Assembly of GYROLAB GL-4000 Human Centrifuge
  • Russian Space Corps Has Few Applicants Due To Low Pay

  • Rosetta Warms Up For Mars Swing-By
  • HiRISE Team Begins Releasing A Flood Of Mars Images Over the Internet
  • Mars Express Preparing For Aphelion Season
  • India Mulls Unmanned Mission To Mars By 2013

  • Terrasar-X Scheduled For Launch From Baikonur On 27 February
  • Soyuz Booster Rocket Launches From Kourou To Cost 50 Million Dollars
  • Government To Consider Accord On Soyuz Launch From Kourou
  • ILS Proton Successfully Launches ARABSAT BADR-4 Satellite

  • Satellites Draw Up Maps Of Ancient City In Xinjiang
  • NASA's "Footprints" Movie Walks To US Museum Theatres
  • Tiger Workshop Highlights Project Results
  • 'Enact Space Law To Govern Use Of Remote Sensing Data'

  • Pluto Sighted For First Time By New Horizons From Four Billion Kilometers Away
  • Making Old Horizons New
  • Scientist Who Found Tenth Planet Discusses The Downgrading Of Pluto
  • New Horizons Spacecraft Snaps Approach Image of the Giant Planet

  • Asymmetric Ashes - Astronomers Study Shape of Stellar Candles
  • Dark Matter Hides, Physicists Seek
  • Twin Star Explosions Fascinate Astronomers
  • Double Star Mission Extended

  • A New Paradigm For Lunar Orbits
  • Genesis Findings Solve Apollo Lunar Soil Mystery
  • Indian Lunar Mission Likely To Take Off 2007 Year End
  • China And Russia Discuss Lunar Project

  • Russia's Glonass System Should Cover Whole Country By Late 2007
  • Control Centre For Europe's Galileo Satellite Navigation System Established
  • Boeing Delta II Delivers GPS Satellite To Orbit
  • Lockheed Martin Completes System Requirements Review For GPS III

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement