24/7 Space News
TIME AND SPACE
Astronomers witness the birth of a very distant cluster of galaxies from the early Universe
This image shows the protocluster around the Spiderweb galaxy (formally known as MRC 1138-262), seen at a time when the Universe was only 3 billion years old. Most of the mass in the protocluster does not reside in the galaxies that can be seen in the centre of the image, but in the gas known as the intracluster medium (ICM). The hot gas in the ICM is shown as an overlaid blue cloud. The hot gas was detected with the Atacama Large Millimeter/submillimeter Array (ALMA), of which ESO is a partner. As light from the cosmic microwave background - the relic radiation from the Big Bang - travels through the ICM, it gains energy when it interacts with the electrons in the hot gas. This is known as the Sunyaev-Zeldovich effect. By studying this effect, astronomers can infer how much hot gas resides in the ICM, and show that the Spiderweb protocluster is in the process of becoming a massive cluster held together by its own gravity. Credit: ESO/Di Mascolo et al.; HST: H. Ford
ADVERTISEMENT
The 2024 Humans To Mars Summit - May 07-08, 2024 - Washington D.C.
Astronomers witness the birth of a very distant cluster of galaxies from the early Universe
by Staff Writers
Munich, Germany (SPX) Mar 30, 2023

Using the Atacama Large Millimeter/submillimeter Array (ALMA), of which ESO is a partner, astronomers have discovered a large reservoir of hot gas in the still-forming galaxy cluster around the Spiderweb galaxy - the most distant detection of such hot gas yet. Galaxy clusters are some of the largest objects known in the Universe and this result, published in Nature, further reveals just how early these structures begin to form.

Galaxy clusters, as the name suggests, host a large number of galaxies - sometimes even thousands. They also contain a vast "intracluster medium" (ICM) of gas that permeates the space between the galaxies in the cluster. This gas in fact considerably outweighs the galaxies themselves. Much of the physics of galaxy clusters is well understood; however, observations of the earliest phases of formation of the ICM remain scarce.

Previously, the ICM had only been studied in fully-formed nearby galaxy clusters. Detecting the ICM in distant protoclusters - that is, still-forming galaxy clusters - would allow astronomers to catch these clusters in the early stages of formation. A team led by Luca Di Mascolo, first author of the study and researcher at the University of Trieste, Italy, were keen to detect the ICM in a protocluster from the early stages of the Universe.

Galaxy clusters are so massive that they can bring together gas that heats up as it falls towards the cluster. "Cosmological simulations have predicted the presence of hot gas in protoclusters for over a decade, but observational confirmations has been missing," explains Elena Rasia, researcher at the Italian National Institute for Astrophysics (INAF) in Trieste, Italy, and co-author of the study. "Pursuing such key observational confirmation led us to carefully select one of the most promising candidate protoclusters."

That was the Spiderweb protocluster, located at an epoch when the Universe was only 3 billion years old. Despite being the most intensively studied protocluster, the presence of the ICM has remained elusive. Finding a large reservoir of hot gas in the Spiderweb protocluster would indicate that the system is on its way to becoming a proper, long-lasting galaxy cluster rather than dispersing.

Di Mascolo's team detected the ICM of the Spiderweb protocluster through what's known as the thermal Sunyaev-Zeldovich (SZ) effect. This effect happens when light from the cosmic microwave background - the relic radiation from the Big Bang - passes through the ICM. When this light interacts with the fast-moving electrons in the hot gas it gains a bit of energy and its colour, or wavelength, changes slightly. "At the right wavelengths, the SZ effect thus appears as a shadowing effect of a galaxy cluster on the cosmic microwave background," explains Di Mascolo.

By measuring these shadows on the cosmic microwave background, astronomers can therefore infer the existence of the hot gas, estimate its mass and map its shape. "Thanks to its unparalleled resolution and sensitivity, ALMA is the only facility currently capable of performing such a measurement for the distant progenitors of massive clusters," says Di Mascolo.

They determined that the Spiderweb protocluster contains a vast reservoir of hot gas at a temperature of a few tens of millions of degrees Celsius. Previously, cold gas had been detected in this protocluster, but the mass of the hot gas found in this new study outweighs it by thousands of times. This finding shows that the Spiderweb protocluster is indeed expected to turn into a massive galaxy cluster in around 10 billion years, growing its mass by at least a factor of ten.

Tony Mroczkowski, co-author of the paper and researcher at ESO, explains that "this system exhibits huge contrasts. The hot thermal component will destroy much of the cold component as the system evolves, and we are witnessing a delicate transition." He concludes that "it provides observational confirmation of long-standing theoretical predictions about the formation of the largest gravitationally bound objects in the Universe."

These results help to set the groundwork for synergies between ALMA and ESO's upcoming Extremely Large Telescope (ELT), which "will revolutionise the study of structures like the Spiderweb," says Mario Nonino, a co-author of the study and researcher at the Astronomical Observatory of Trieste.

The ELT and its state-of-the-art instruments, such as HARMONI and MICADO, will be able to peer into protoclusters and tell us about the galaxies in them in great detail. Together with ALMA's capabilities to trace the forming ICM, this will provide a crucial glimpse into the assembly of some of the largest structures in the early Universe.

Research Report:Forming intracluster gas in a galaxy protocluster at a redshift of 2.16

Related Links
ESO
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
AI finds that first stars were clustered together
Tokyo, Japan (SPX) Mar 27, 2023
An international team has used artificial intelligence to analyze the chemical abundances of old stars and found indications that the very first stars in the Universe were born in groups rather than as isolated single stars. Now the team hopes to apply this method to new data from on-going and planned observation surveys to better understand the early days of the Universe. After the Big Bang, the only elements in the Universe where hydrogen, helium, and lithium. Most of the other elements making u ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
NASA, Boeing aiming for July launch of Starliner space capsule

Improving the accuracy of orbit prediction and position error covariance prediction

Russia's only female cosmonaut praises ISS mission

THE NEW GUYS: The Historic Class of Astronauts that Changed the Face of Space Travel

TIME AND SPACE
NASA rocket engines re-engineered as production restarts

Privately built, liquid-fuel rocket first in world to reach orbit in debut flight

Boeing pushes Starliner test flight to July

Japan postpones H2A rocket launch after H3 failure

TIME AND SPACE
Ready for Software Upgrade Sols 3786-3788

MOXIE Celebrates 2 Years on Mars: Discoveries and Work Left To Do

First Mars Sample Depot shaped by Rover, Lander, and Helicopter

A Picture Perfect Day - Or To Be More Exact, a Day Perfect for Taking Pictures Sols 3783-3784

TIME AND SPACE
China's Shenzhou XV astronauts complete 3rd spacewalk

China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

TIME AND SPACE
SpaceX sends 56 Starlink satellites into low-Earth orbit

O'Shaughnessy Ventures announces investment in Atomos Space

Unseenlabs ready for Bro-9 satellite launch dedicated vessel geolocation from space

Globalstar announces $200M non-convertible financing to satisfy remaining capital needs

TIME AND SPACE
Integral safe at last

WVU researchers explore alternative sources to help power space

LeoLabs and ClearSpace partner to advance a safer, more sustainable space environment

OpenAI's ChatGPT blocked in Italy: privacy watchdog

TIME AND SPACE
New paper investigates exoplanet climates

Do Earth-like exoplanets have magnetic fields

JWST confirms giant planet atmospheres vary widely

Planet hunting and the origins of life

TIME AND SPACE
Redness of Neptunian asteroids sheds light on early Solar System

Sabotaging Juice

Hubble monitors changing weather and seasons at Jupiter and Uranus

An explaination for unusual radar signatures in the outer solar system

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.