. | . |
Artificial intelligence helps to predict likelihood of life on other worlds by Morgan Hollis Liverpool UK (SPX) Apr 05, 2018
Developments in artificial intelligence may help us to predict the probability of life on other planets, according to new work by a team based at Plymouth University. The study uses artificial neural networks (ANNs) to classify planets into five types, estimating a probability of life in each case, which could be used in future interstellar exploration missions. The work is presented at the European Week of Astronomy and Space Science (EWASS) in Liverpool on 4 April by Mr Christopher Bishop. Artificial neural networks are systems that attempt to replicate the way the human brain learns. They are one of the main tools used in machine learning, and are particularly good at identifying patterns that are too complex for a biological brain to process. The team, based at the Centre for Robotics and Neural Systems at Plymouth University, have trained their network to classify planets into five different types, based on whether they are most like the present-day Earth, the early Earth, Mars, Venus or Saturn's moon Titan. All five of these objects are rocky bodies known to have atmospheres, and are among the most potentially habitable objects in our Solar System. Mr Bishop comments, "We're currently interested in these ANNs for prioritising exploration for a hypothetical, intelligent, interstellar spacecraft scanning an exoplanet system at range." He adds, "We're also looking at the use of large area, deployable, planar Fresnel antennas to get data back to Earth from an interstellar probe at large distances. This would be needed if the technology is used in robotic spacecraft in the future." Atmospheric observations - known as spectra - of the five Solar System bodies are presented as inputs to the network, which is then asked to classify them in terms of the planetary type. As life is currently known only to exist on Earth, the classification uses a 'probability of life' metric which is based on the relatively well-understood atmospheric and orbital properties of the five target types. Bishop has trained the network with over a hundred different spectral profiles, each with several hundred parameters that contribute to habitability. So far, the network performs well when presented with a test spectral profile that it hasn't seen before. "Given the results so far, this method may prove to be extremely useful for categorising different types of exoplanets using results from ground-based and near Earth observatories" says Dr Angelo Cangelosi, the supervisor of the project. The technique may also be ideally suited to selecting targets for future observations, given the increase in spectral detail expected from upcoming space missions such ESA's Ariel Space Mission and NASA's James Webb Space Telescope.
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |