. 24/7 Space News .
Arizona Team Discovers Supergiant Star Spews Molecules Needed For Life

Jets of molecules, indicated by red and blue arrows, flow from the supergiant star VY Canis Majoris photographed by the Hubble Space Telescope. The blue arrow (lower right) shows the slight deviation of the "squirt" flow from the direction towards us. The curved nebulous tail (CNT) and red arrow (upper right) show the fan of material flowing away from us and to the side. The white arrows and transparent circle show the general spherical flow of matter outward. (Illustration: UA Steward Observatory)
By Lori Stiles
Tucson AZ (SPX) Jul 27, 2007
University of Arizona astronomers who are probing the oxygen-rich environment around a supergiant star with one of the world's most sensitive radio telescopes have discovered a score of molecules that include compounds needed for life. "I don't think anyone would have predicted that VY Canis Majoris is a molecular factory. It was really unexpected," said Arizona Radio Observatory (ARO) Director Lucy Ziurys, UA professor of astronomy and of chemistry.

"Everyone thought that the interesting chemistry in gas clouds around old stars was happening in envelopes around nearer, carbon-rich stars," Ziurys said. "But when we started looking closely for the first time at an oxygen-rich object, we began finding all these interesting things that weren't supposed to be there."

VY Canis Majoris, one of the most luminous infrared objects in the sky, is an old star about 5,000 light years away. It's a half million times more luminous than the sun, but glows mostly in the infrared because it's a cool star. It truly is "supergiant" -- 25 times as massive as the sun and so huge that it would fill the orbit of Jupiter.

But the star is losing mass so fast that in a million years -- an astronomical eyeblink -- it will be gone. The star already has blown away a large part of its atmosphere, creating its surrounding envelope that contains about twice as much oxygen as carbon.

Ziurys and her colleagues are not yet halfway through their survey of VY Canis Majoris, but they've already published in the journal, Nature (June 28 issue), about their observations of a score of chemical compounds. These include some molecules that astronomers have never detected around stars and are needed for life.

Among the molecules Ziurys and her team reported in Nature are table salt (NaCl); a compound called phosphorus nitride (PN), which contains two of the five most necessary ingredients for life; molecules of HNC, which is a variant form of the organic molecule, hydrogen cyanide; and an ion molecule form of carbon monoxide that comes with a proton attached (HCO+). Astronomers have found very little phosphorus or ion molecule chemistry in outflows from cool stars until now.

"We think these molecules eventually flow from the star into the interstellar medium, which is the diffuse gas between stars. The diffuse gas eventually collapses into denser molecular clouds, and from these solar systems eventually form," Ziurys said.

Comets and meteorites dump about 40,000 tons of interstellar dust on Earth each year. We wouldn't be carbon-based life forms otherwise, Ziurys noted, because early Earth lost all of its original carbon in the form of a methane atmosphere.

"The origin of organic material on Earth -- the chemical compounds that make up you and me -- probably came from interstellar space. So one can say that life's origins really begin in chemistry around objects like VY Canis Majoris."

Astronomers previously studied VY Canis Majoris with optical and infrared telescopes. "But that's kind of like diving in with a butcher knife to look at what's there, when what you need is an oyster fork," Ziurys said.

The Arizona Radio Observatory's 10-meter Submillimeter Telescope (SMT) on Mount Graham, Ariz., excels as a sensitive stellar "oyster fork." Chemical molecules each possess their own unique radio frequencies. The astronomers identify the unique radio signatures of chemical compounds in laboratory work, enabling them to identify the molecules in space.

The ARO team recently began testing a new receiver in collaboration with the National Radio Astronomy Observatory. The receiver was developed as a prototype for the Atacama Large Millimeter Array, a telescope under construction in Chile. The state-of-the-art receiver has given the SMT 10 times more sensitivity at millimeter wavelengths than any other radio telescope. The SMT can now detect emission weaker than a typical light bulb from distant space at very precise frequencies.

The UA team has discovered that the molecules aren't just flowing out as a gas sphere around VY Canis Majoris, but also are blasting out as jets through the spherical envelope.

"The signals we receive show not only which molecules are seen, but how the molecules are moving toward and away from us," said Stefanie Milam, a recent doctoral graduate on the ARO team.

The molecules flowing out from VY Canis Majoris trace complex winds in three outflows: the general, spherical outflow from the star, a jet of material blasting out towards Earth, and another jet shooting out a 45 degree angle away from Earth.

Astronomers have seen bipolar outflows from stars before, but not two, unconnected, asymmetric and apparently random outflows, Ziurys said.

Ziurys said she believes the two random jets are evidence for what astronomers earlier proposed are "supergranules" that form in very massive stars, and has been seen in Betelgeuse. Supergranules are huge cells of gas that form inside the star, then float to the surface and are ejected out of the star, where they cool in space and form molecules, creating jet outflows with certain molecular compositions.

Back in the 1960s, no one believed molecules could survive the harsh environment of space. Ultraviolet radiation supposedly reduced matter to atoms and atomic ions.

Now scientists conclude that at least half of the gas in space between the stars within the 33-light-year inner galaxy is molecular, Ziurys said. "Our results are more evidence that we live in a really molecular universe, as opposed to an atomic one," Ziurys said.

The Arizona Radio Observatory (ARO) owns and operates two radio telescopes in southern Arizona: The former NRAO 12 Meter (KP12m) Telescope located 50 miles southwest of Tucson on Kitt Peak and the Submillimeter Telescope (SMT) located on Mount Graham near Safford, Ariz.

Community
Email This Article
Comment On This Article

Related Links
University of Arizona
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
Green Bank WV (SPX) Jul 25, 2007
Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say.







  • NASA Faces Congress Scrutiny As Russia Denies US Astronauts Had Chance To Booze
  • Udall Urges Conrad To Question Nussle On NASA Funding
  • Raytheon Launches Virtual Summer Camp For Kids
  • NASA Jolted By Boozing Astronauts And Sabotage

  • Mars Winds Could Pose Stiff Challenge For NASA's Phoenix Lander Team
  • Spirit Sees Dustier Sky
  • Europe Asks Thales Alenia Space For The Price Of A Mars Robotic Rover
  • Search For Life In Martian Ice Relies On UK Technology

  • India Plans To Double Satellite Launches Within Five Years
  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Sea Launch To Resume Zenit Launches In October

  • DigitalGlobe Expands Commercial Imagery Distribution Network In Australia And New Zealand
  • DMCii Wins ESA Satellite Imaging Contract
  • Campaign Prepares For Future Land-Surface Monitoring
  • Envisat Captures Breath Of Volcano

  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol
  • The Dwarf Planet Known As Eris Is More Massive Than Pluto

  • Arizona Team Discovers Supergiant Star Spews Molecules Needed For Life
  • Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
  • First Pulsar Detection With LOFAR Station
  • The Gobbling Dwarf That Exploded

  • Throttling Back To The Moon
  • Moonshine Can Reflect Lunar Composition
  • Northrop Grumman Helps NASA Shape Plans For Affordable Lunar Lander
  • Summer Moon Illusion

  • New York Cab Drivers Threaten Strike Over GPS Systems
  • That Cell Phone In Your Hand Is A Tracking Device
  • EU And US To Make GPS And Galileo Compatible
  • Trimble Combines Its Popular Trimble Outdoors GPS-on-Cellular Applications Into An Affordable Package

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement