. 24/7 Space News .
EXO LIFE
Antarctic fungi survive Martian conditions on the International Space Station
by Staff Writers
Madrid, Spain (SPX) Jan 29, 2016


Section of rock coloniszed by cryptoendolithic microorganisms and the Cryomyces fungi in quartz crystals under an electron microscope. Image courtesy S. Onofri et al. For a larger version of this image please go here.

European scientists have gathered tiny fungi that take shelter in Antarctic rocks and sent them to the International Space Station. After 18 months on board in conditions similar to those on Mars, more than 60% of their cells remained intact, with stable DNA. The results provide new information for the search for life on the red planet. Lichens from the Sierra de Gredos (Spain) and the Alps (Austria) also travelled into space for the same experiment.

The McMurdo Dry Valleys, located in the Antarctic Victoria Land, are considered to be the most similar earthly equivalent to Mars. They make up one of the driest and most hostile environments on our planet, where strong winds scour away even snow and ice. Only so-called cryptoendolithic microorganisms, capable of surviving in cracks in rocks, and certain lichens can withstand such harsh climatological conditions.

A few years ago a team of European researchers travelled to these remote valleys to collect samples of two species of cryptoendolithic fungi: Cryomyces antarcticus and Cryomyces minteri. The aim was to send them to the International Space Station (ISS) for them to be subjected to Martian conditions and space to observe their responses.

The tiny fungi were placed in cells (1.4 centimetres in diameter) on a platform for experiments known as EXPOSE-E, developed by the European Space Agency to withstand extreme environments. The platform was sent in the Space Shuttle Atlantis to the ISS and placed outside the Columbus module with the help of an astronaut from the team led by Belgian Frank de Winne.

For 18 months half of the Antarctic fungi were exposed to Mars-like conditions. More specifically, this is an atmosphere with 95% CO2, 1.6% argon, 0.15% oxygen, 2.7% nitrogen and 370 parts per million of H2O; and a pressure of 1,000 pascals. Through optical filters, samples were subjected to ultra-violet radiation as if on Mars (higher than 200 nanometres) and others to lower radiation, including separate control samples.

"The most relevant outcome was that more than 60% of the cells of the endolithic communities studied remained intact after 'exposure to Mars', or rather, the stability of their cellular DNA was still high," highlights Rosa de la Torre Noetzel from Spain's National Institute of Aerospace Technology (INTA), co-researcher on the project.

The scientist explains that this work, published in the journal Astrobiology, forms part of an experiment known as the Lichens and Fungi Experiment (LIFE), "with which we have studied the fate or destiny of various communities of lithic organisms during a long-term voyage into space on the EXPOSE-E platform."

"The results help to assess the survival ability and long-term stability of microorganisms and bioindicators on the surface of Mars, information which becomes fundamental and relevant for future experiments centred around the search for life on the red planet," states De la Torre.

Also lichens from Gredos and the Alps
Researchers from the LIFE experiment, coordinated from Italy by Professor Silvano Onofri from the University of Tuscany, have also studied two species of lichens (Rhizocarpon geographicum and Xanthoria elegans) which can withstand extreme high-mountain environments. These have been gathered from the Sierra de Gredos (Avila, Spain) and the Alps (Austria), with half of the specimens also being exposed to Martian conditions.

Another range of samples (both lichens and fungi) was subjected to an extreme space environment (with temperature fluctuations of between -21.5 and +59.6 + C, galactic-cosmic radiation of up to 190 megagrays, and a vacuum of between 10-7 to 10-4 pascals). The effect of the impact of ultra-violet extraterrestrial radiation on half of the samples was also examined.

After the year-and-a-half-long voyage, and the beginning of the experiment on Earth, the two species of lichens 'exposed to Mars' showed double the metabolic activity of those that had been subjected to space conditions, even reaching 80% more in the case of the species Xanthoria elegans.

The results showed subdued photosynthetic activity or viability in the lichens exposed to the harsh conditions of space (2.5% of samples), similar to that presented by the fungal cells (4.11%). In this space environment, 35% of fungal cells were also seen to have kept their membranes intact, a further sign of the resistance of Antarctic fungi.

Silvano Onofri, Jean-Pierre de Vera, Laura Zucconi, Laura Selbmann, Giuliano Scalzi, Kasthuri J. Venkateswaran, Elke Rabbow, Rosa de la Torre, Gerda Horneck. "Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station". Astrobiology 15(12): 1052-9, December 2015. DOI: 10.1089/ast.2015.1324.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
FECYT - Spanish Foundation for Science and Technology
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO LIFE
The aliens are silent because they're dead
Canberra, Australia (SPX) Jan 22, 2016
Life on other planets would likely be brief and become extinct very quickly, say astrobiologists from The Australian National University (ANU). In research aiming to understand how life might develop, the scientists realised new life would commonly die out due to runaway heating or cooling on their fledgling planets. "The universe is probably filled with habitable planets, so many scientis ... read more


EXO LIFE
Russia postpones manned Lunar mission to 2035

Audi joins Google Lunar XPrize competition

Lunar mission moves a step closer

Momentum builds for creation of 'moon villages'

EXO LIFE
Mars Rover Opportunity Busy Through Depth of Winter

Getting real - on Mars

India to Cooperate With France on Next Mission to Mars

Opportunity rock abrasion tool conducts two rock grinds

EXO LIFE
Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

Arab nations eye China, domestic market to revive tourism

2016 Goals Vital to Commercial Crew Success

EXO LIFE
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

EXO LIFE
Russian Cosmonauts to Attach Thermal Insulation to ISS

Astronaut Scott Kelly plays ping pong with water

Japanese astronaut learned Russian to link two nations

NASA, Texas Instruments Launch mISSion imaginaTIon

EXO LIFE
SpaceX Tests Crew Dragon Parachutes

70th consecutive successful launch for Ariane 5

Arianespace's year-opening Ariane 5 mission is approved for launch

SpaceX Falcon 9 upgrade certified for National Security Space launches

EXO LIFE
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

EXO LIFE
Mysterious behavior of quantum liquid elucidated, a world first

Beetle-inspired discovery could reduce frost's costly sting

Laser Debris Shields

Acoustic tweezers provide much needed pluck for 3-D bioprinting









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.