. 24/7 Space News .
STELLAR CHEMISTRY
Ancient star explosions revealed in the deep sea
by Staff Writers
Canberra, Australia (SPX) Aug 26, 2020

file illustration only

A mystery surrounding the space around our solar system is unfolding thanks to evidence of supernovae found in deep-sea sediments.

Professor Anton Wallner, a nuclear physicist at ANU, led the study which shows the Earth has been travelling for the last 33,000 years through a cloud of faintly radioactive dust.

"These clouds could be remnants of previous supernova explosions, a powerful and super bright explosion of a star," Professor Wallner said.

Professor Wallner conducted the research at the ANU Heavy Ion Accelerator Facility (HIAF). He also holds joint positions at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Technical University Dresden (TUD) in Germany.

The researchers searched through several deep-sea sediments from two different locations that date back 33,000 years using the extreme sensitivity of HIAF's mass spectrometer. They found clear traces of the isotope iron-60, which is formed when stars die in supernova explosions.

Iron-60 is radioactive and completely decays away within 15 million years, which means any iron-60 found on the earth must have been formed much later than the rest of the 4.6-billion-year old earth and arrived here from nearby supernovae before settling on the ocean floor.

Professor Wallner previously found traces of iron-60 at about 2.6 million years ago, and possibly another at around 6 million years ago, suggesting earth had travelled through fallout clouds from nearby supernovae.

For the last few thousand years the solar system has been moving through a denser cloud of gas and dust, known as the local interstellar cloud, (LIC), whose origins are unclear. If this cloud had originated during the past few million years from a supernova, it would contain iron-60, and so the team decided to search more recent sediment to find out.

Sure enough, there was iron-60 in the sediment at extremely low levels - equating to radioactivity levels in space far below the Earth's natural background levels - and the distribution of the iron-60 matched earth's recent travel through the local interstellar cloud. But the iron-60 extended further back and was spread throughout the entire 33,000 year measurement period.

The lack of correlation with the solar system's time in the current local interstellar cloud seems to pose more questions than it answers. Firstly, if the cloud was not formed by a supernova, where did it come from? And secondly, why is there iron-60 so evenly spread throughout space?

"There are recent papers that suggest iron-60 trapped in dust particles might bounce around in the interstellar medium," Professor Wallner said.

"So the iron-60 could originate from even older supernovae explosions, and what we measure is some kind of echo.

"More data is required to resolve these details."

Research paper


Related Links
Australian National University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Mystery gas discovered near center of Milky Way
Canberra, Australia (SPX) Aug 20, 2020
An international team of researchers have discovered a dense, cold gas that's been shot out from the centre of the Milky Way "like bullets". Exactly how the gas has been ejected is still a mystery, but the research team, including Professor Naomi McClure-Griffiths from The Australian National University (ANU), say their findings could have important implications for the future of our galaxy. "Galaxies can be really good at shooting themselves in the foot," Professor McClure-Griffiths said. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Russian cosmonaut sheds light on how ISS crew deals with suspected air leak

The Seventh Meeting of the Japan-U.S. Comprehensive Dialogue on Space: Joint Statement

Boeing's Starliner makes progress ahead of flight test with astronauts

ISS crew moved to Russian segment for 3 days to search for air leak

STELLAR CHEMISTRY
New launch opportunity begins on Sept 1 for small sats mission

Safety of SpaceX suits an 'open question' says Russian designer

Ball Aerospace completes small satellite, Green Fuel Mission

NASA's Green Propellant Infusion Mission nears completion

STELLAR CHEMISTRY
China releases recommended Chinese names for Mars craters

Follow Perseverance in real time on its way to Mars

Sustained planetwide storms may have filled lakes, rivers on ancient mars

Deep learning will help future Mars rovers go farther, faster, and do more science

STELLAR CHEMISTRY
Mars-bound Tianwen 1 hits milestone

China's Mars probe over 8m km away from Earth

China seeks payload ideas for mission to moon, asteroid

China marching to Mars for humanity's better shared future

STELLAR CHEMISTRY
Africa is investing more in space and satellite industry

Satellite constellations could hinder astronomical research, scientists warn

ESA astronauts are flat out training

Ban on import of communication satellites opens up opportunity says ISRO chief

STELLAR CHEMISTRY
NASA selects proposals for new space environment missions

NASA engineers checking InSight's weather sensors

US to spend $625 mn on super-computing research centers

Spacepath Communications wins large order for solid-state RF power amplifiers

STELLAR CHEMISTRY
Bacteria could survive travel between Earth and Mars when forming aggregates

Fifty new planets confirmed in machine learning first

Tracing the cosmic origin of complex organic molecules with their radiofrequency footprint

Bacteria could survive the trip to Mars in the form of thick aggregates

STELLAR CHEMISTRY
Technology ready to explore subsurface oceans on Ganymede

Large shift on Europa was last event to fracture its surface

The Sun May Have Started Its Life with a Binary Companion

Ganymede covered by giant crater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.