24/7 Space News
MARSDAILY
Ancient northern ocean on Mars evidenced by in situ observations of marine sedimentary rocks
Block diagrams show interpreted sedimentary structures. The boulder is about 110 cm across and preserves a series of left-dipping planar surfaces separating 2-10 cm thick tabular units interpreted to be primary sedimentary bedding and is generally consistent with that on the surrounding ground. The greenish tint on some surfaces is due to color saturation of the sensors, and not real. Full caption below.
ADVERTISEMENT
     
Ancient northern ocean on Mars evidenced by in situ observations of marine sedimentary rocks
by Staff Writers
Beijing, China (SPX) May 24, 2023

An international research team led by Professor Long Xiao from the School of Earth Sciences of China University of Geosciences (Wuhan) discovered the presence of marine sedimentary rocks on the surface of Mars for the first time by comprehensively analyzing the scientific data obtained by the multispectral camera (MSCam) carried by the Zhurong rover. The relevant research results were published in the journal "National Science Review" under the title "Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations."

Currently Mars is cold and dry, lacking water and traces of life, but the Martian environment billions of years ago may have been very different. Past studies have proven that there was a large amount of liquid water on Mars in the early days, and the paleo-ocean hypothesis was proposed through landform analysis of satellite images and numerical simulation. It is proposed that the paleo-ocean area in the northern lowlands formed a special marine sedimentary geological unit, called the Vasitas Borealis Formation (VBF), but lacks the support of in situ data. Therefore, whether there was an ocean in the northern plain of Mars has been the focus of controversy for decades.

In 2021, the "Zhurong" rover carried by China's Tianwen-1 Mars mission successfully landed on the southern edge of the Utopia Plain in the eastern part of the northern plain of Mars. Part of the mission was to search for any possible evidence for or against the existence of an ancient ocean on Mars, which possibly may have hosted early life.

Since landing, the Zhurong has been heading south towards potential coastline areas, observing the exposed Vasitas Borealis Formation along the way. Zhurong traveled about 1921 meters, and used different imaging and analysis systems to conduct detailed in-situ observations of outcrops and surface rocks. The navigation and terrain cameras have obtained 106 sets of panoramic images, which recorded in detail "the surface morphology and structural characteristics of many rocks near the route of the Zhurong rover.

The research team examined the photos sent back by the Mars rover's on-board camera and found that the exposed rocks developed bedding structures, which are significantly different from the common volcanic rocks on the surface of Mars, and also different from the bedding structures formed by aeolian sand deposition. The structures indicated bidirectional flow characteristics consistent with low-energy tidal currents in Earth's littoral-shallow marine environment.

Based on the rock images obtained by MSCam, the research team analyzed in detail the surface structure of the rocks in the inspection area of the Zhurong rover. Since the observed rocks are all located in the Zhurong inspection area, the research team named the geological unit it represents the Zhurong Member. During the study, the research team found that the rocks in the section typically retain local lens-shaped cross-bedding fabrics, mainly composed of a variety of small-scale cross-bedding, accompanied by a small amount of lens-shaped flaser bedding and sedimentary structures of small channel structures.

Among them, the layers that make up the cross-bedding overlap and tilt in two opposite directions, indicating a bidirectional paleocurrent environment. In addition, since the thickness and grain size of the strata have large differences in different directions, it indicates that there are differences in the intensity of paleocurrents in the two directions. This bidirectional water flow pattern is usually formed by the fluid action with periodic flow direction changes, which is not common in eolian and fluvial environments, but is common in the littoral-shallow sea environment of Earth.

Compared with Earth, Mars has only two small satellites, which makes its surface have a low-energy tidal system, and only small-scale bedding structures can be formed in this tidal environment. In addition, the bedforms and sedimentary structures identified in the study have evidence supporting aqueous flow rather than eolian deposition.

The team's observational results of the Zhurong member rocks in this study are the first direct in situ evidence detected to support the existence of ancient oceans in the northern plains of Mars. The location of the landing site of Zhurong indicates that the observed sedimentary structures may have formed during the regression of the northern plain paleo-ocean.

The sedimentary structures found in the Vasitas Borealis Formation provide new insights into the early history of Mars. The in-depth exploration by Zhurong in this area and future sample return will deepen our understanding of the habitability of Mars and the preservation of microbial life traces.

The joint research team of this research work comes from 13 co-authors from universities in China and USA. Professors Long Xiao and Jun Huang from China University of Geosciences (Wuhan) are the co-first authors of the paper. Professors Long Xiao and Timothy Kusky from China University of Geosciences (Wuhan) -are the co-corresponding authors of the paper.

Full Caption:
Block diagrams show interpreted sedimentary structures. The boulder is about 110 cm across and preserves a series of left-dipping planar surfaces separating 2-10 cm thick tabular units interpreted to be primary sedimentary bedding and is generally consistent with that on the surrounding ground. The greenish tint on some surfaces is due to color saturation of the sensors, and not real. The beds have internal laminations that differ from bed to bed. These features are used to interpret the primary depositional environment. Note that the boulder is locally sculpted by wind, in places covered by wind-blown dust or sand, and possibly affected by chemical weathering or cementation. a. Stratigraphic section drawn perpendicular to bedding along the front face of the outcrop, and placing boulder c on top, as it appears to strike with a small missing gap. The section is divided into six units of planar, herringbone, convex-up, and trough cross-laminated layers, suggestive of deposition by bi-directional subaqueous currents. Details of features from red boxes on panel a. b. Features interpreted as herringbone cross-laminae formed by bipolar current directions, typical of alternating currents. c. Features interpreted as trough cross-lamina from a separate boulder in the background, representing bipolar current directions, overlain by planar cross-laminated sand. Boulder is possibly out of place or even upside down, but appears to have similar orientation as the main boulder. d. Features interpreted as planar bedding visible in 3D around a corner in the boulder, overlain by a concave cross-laminated unit. e. Features interpreted as herringbone cross-lamina, strongly etched by wind, forming a pseudo-fan shape.

Research Report:Evidence for Marine Sedimentary Rocks in Utopia Planitia: Zhurong Rover Observations

Related Links
Lunar Exploration and Space Program
Mars News and Information at MarsDaily.com
Lunar Dreams and more

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
MARSDAILY
Martian crust like heavy armour
Zurich, Switzerland (SPX) May 18, 2023
A strong quake in the last year of the NASA Mars InSight mission, enabled researchers at ETH Zurich to determine the global thickness and density of the planet's crust. On average, the Martian crust is much thicker than the Earth's or the Moon's crust, and the planet's main source of heat is radioactive. In May 2022, the Marsquake Service at ETH Zurich recorded the largest quake ever observed on another planet. This event, with an estimated magnitude of 4.6 was recorded on the surface of Mars by t ... read more

ADVERTISEMENT
ADVERTISEMENT
MARSDAILY
ASPINA Launches Space Team

Space Hero and Partners Launch Innovative Space Village, Boosting Space Tourism

Solar Foods one of the Phase II winners of NASA Deep Space Food Challenge

Virgin Galactic resumes spaceflights after two year pause

MARSDAILY
Rocket Lab scoops up Virgin Orbit Long Beach California assets

NASA continues key test series with rocket engine hot fire

South Korea launches homegrown rocket after delay

Rocket Lab launches second batch of TROPICS satellites for NASA

MARSDAILY
Hitting the road after three weeks at Ubajara: Sols 3839-3840

MAHLI works the night shift: Sols 3837-3838

Ancient northern ocean on Mars evidenced by in situ observations of marine sedimentary rocks

A deep underground lab could hold key to habitability on Mars

MARSDAILY
Shenzhou XVI mission to launch in days

China's next space exploration to feature new faces

"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

MARSDAILY
NASA funds small business to advance tech for Space, Earth

Terran Orbital Announces $37.1 Million Registered Direct Offering

Virgin Orbit shuts down, liquidates assets in bankruptcy auction

Iridium adds to constellation resilience with launch of spare satellites

MARSDAILY
Powerful Arab League communications satellite ready for night launch

TransAstra receives Space Force contract to explore in-orbit propulsion systems

Heinrich Hertz mission ready for launch

Team uses 3D printing to strengthen key material in aerospace and energy utilities

MARSDAILY
The search for habitable planets expands

Astronomers discover a key planetary system to understand the formation mechanism of the mysterious 'super-Earths'

New study provides novel insights into the cosmic evolution of amino acids

Global team simulates message from extraterrestrial intelligence to Earth

MARSDAILY
First observation of a Polar Cyclone on Uranus

Research 'solves' mystery of Jupiter's stunning colour changes

NASA's Juno mission closing in on Io

Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.