. 24/7 Space News .
AEROSPACE
Analysing the contrails of the future
by Staff Writers
Berlin, Germany (SPX) Jul 21, 2022

Two Arcus gliders operated by the Perlan project will be deployed for the test flights, one equipped with a hydrogen jet engine and the other with a conventional kerosene-powered combustion engine. To ensure comparability of the data, the test flights will be carried out in immediate succession under the same meteorological conditions.

Contrails are generated as a result of aircraft emissions. They could amplify the greenhouse effect in the form of long-lasting ice clouds. The soot particles from jet fuel combustion act as particularly strong condensation nuclei for cloud formation in the part of the atmosphere where cold air is present. New engine technologies and the use of sustainable aviation fuels (SAFs) offer promising approaches to significantly reduce the climate impact of contrails.

To this end, the German Aerospace Center (Deutsches Zentrum fur Luft- und Raumfahrt; DLR) is supporting an Airbus test flight programme, operated by its subsidiary Airbus UpNext, which is investigating for the first time contrails produced by a carbon dioxide emission-free aircraft that is powered by hydrogen. As part of the Blue Condor project, test flights are planned for the end of 2022 and in 2023 in North Dakota, USA.

Engine comparison
Two Arcus gliders operated by the Perlan project will be deployed for the test flights, one equipped with a hydrogen jet engine and the other with a conventional kerosene-powered combustion engine. To ensure comparability of the data, the test flights will be carried out in immediate succession under the same meteorological conditions.

The respective glider will be towed by an EGRETT, a high-altitude research aircraft, to an altitude of more than nine kilometres. There, the glider will ignite the engine with which it is equipped. The EGRETT, outfitted with measurement instruments, then takes on the role of chaser and flies through the contrail in close formation, which also allows for the emissions from the exhaust plume to be measured.

The aim is to measure the microphysical properties of 'hydrogen contrails' in the atmosphere for the first time. The data will contribute to a better understanding of the formation of contrails resulting from hydrogen propulsion. In this way, technologies can be developed to modify the properties of the clouds impacting the climate and further mitigate their effect.

Airbus is providing the hydrogen system and equipment, including the combustion engine, and is planning the flights of the test mission together with DLR. The DLR Institute of Atmospheric Physics is responsible for the measurements and data analysis.

Revolutionising future aviation
"DLR is a world leader when it comes to researching aircraft emissions. In order to achieve climate-neutral aviation, research results must be incorporated directly into the development of new products. We are pleased to be able to support Airbus and its subsidiary with this technology transfer," says Markus Fischer, DLR Divisional Board Member for Aeronautics.

Sandra Bour Schaeffer, CEO of Airbus UpNext adds: "The aviation industry is already working hard to reduce all aviation emissions by 2050, and we are proud to have international experts at our side for this next important step."

Hydrogen engines predominantly emit water vapour and nitrogen oxides. Models show that the resulting contrails could have a much smaller effect on the climate. Direct hydrogen combustion does not produce particulate matter. Experts therefore suspect that the ice particles formed tend to be larger and occur in smaller numbers than with soot emissions. As a result, their rainout occurs faster, which means that the contrails are short-lived and contribute only marginally to global warming. However, science has lacked concrete measurement data on these complex atmospheric processes so far.

If the assumptions based on models can thus be confirmed, hydrogen combustion could revolutionise aviation of the future. This is precisely why measurements at cruising altitudes are necessary because it is not clear whether the models cover all relevant processes. Hydrogen combustion also offers significant reduction potential because it does not lead to carbon dioxide emissions.

Only the increased emission of water vapour into the stratosphere could counteract the mitigating climate effect of these contrails and must be taken into account in the analyses. The 'Blue Condor measurement flights' will provide fundamental data that will allow reliable statements on contrails to be issued for the first time.

The atmospheric researchers at Oberpfaffenhofen are using tried and tested instruments as well as instruments that were developed specifically for the mission. In particular, water vapour and ice particles as well as nitrogen oxides and aerosols are to be measured during the flight. The DLR project group H2CONTRAIL is leading from the DLR side and supplementing the measurements with targeted simulations to investigate the climate impact of contrails from hydrogen-fueled engines.

Research paper


Related Links
DLR Institute of Atmospheric Physics
Perlan project
Airbus UpNext
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


AEROSPACE
Airbus to study climate impact of hydrogen-powered planes
Farnborough, United Kingdom (AFP) July 20, 2022
Aerospace giant Airbus is to conduct test flights to study the composition of contrails left by zero-emission hydrogen-powered planes, the company announced Wednesday at the Farnborough Air Show. The project, named Blue Condor, is part of efforts to bring a hydrogen-combustion plane into service by 2035 to try to eliminate CO2 emissions, the main gas responsible for the greenhouse effect. Two gliders, one equipped with a hydrogen combustion engine and the other with a kerosene-powered engine, wi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Dragon docks at ISS to deliver various science payloads

US renews space flights with Russia in rare cooperation

NASA Highlights Climate Research on Cargo Launch, Sets Coverage

Short space trips for paying passengers on the way

AEROSPACE
Northrop Grumman and NASA test SLS booster

NASA, GE complete historic hybrid-electric propulsion tests

Dawn Aerospace awarded EU contract for hydrazine-replacement program

Patent approved for space propulsion system poised to transform orbital space logistics

AEROSPACE
Laser marking on Mars

Mars dust as a basis for life? no problem for certain bacteria

Unequal siblings: Ius and Tithonium Chasma

When Mars throws you a curveball Sol 3539-3540

AEROSPACE
China's newest research lab prepares launch to space

China prepares to launch Wentian lab module

Third Tianlian II-series satellite launched

Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

AEROSPACE
Satellite operators Eutelsat and OneWeb eye possible merger

NASA and Houston's Ion Partner to Create Opportunities for Startup Community

Ukrainian Space Startups

Tech firms unveil plan for 'space-based' 5G network

AEROSPACE
Decoding the structure and properties of near-infrared reflective pigments

Understanding friction, the unavoidable enemy

Chemists unlock secrets of molten salts

Floors in ancient Greek luxury villa were laid with recycled glass

AEROSPACE
Rocking shadows in protoplanetary discs

To search for alien life, astronomers will look for clues in the atmospheres of distant planets

Webb begins hunt for the first stars and habitable worlds

Undead planets: the unusual conditions of the first exoplanet detection

AEROSPACE
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.