24/7 Space News
ENERGY TECH
An electric vehicle battery for all seasons
stock image only
An electric vehicle battery for all seasons
by Staff Writers
Lemont IL (SPX) May 18, 2023

Many owners of electric vehicles worry about how effective their battery will be in very cold weather. Now a new battery chemistry may have solved that problem.

In current lithium-ion batteries, the main problem lies in the liquid electrolyte. This key battery component transfers charge-carrying particles called ions between the battery's two electrodes, causing the battery to charge and discharge. But the liquid begins to freeze at sub-zero temperatures. This condition severely limits the effectiveness of charging electric vehicles in cold regions and seasons.

To address that problem, a team of scientists from the U.S. Department of Energy's (DOE) Argonne and Lawrence Berkeley national laboratories developed a fluorine-containing electrolyte that performs well even in sub-zero temperatures.

"Our research thus demonstrated how to tailor the atomic structure of electrolyte solvents to design new electrolytes for sub-zero temperatures." - John Zhang, Argonne group leader

"Our team not only found an antifreeze electrolyte whose charging performance does not decline at minus 4 degrees Fahrenheit, but we also discovered, at the atomic level, what makes it so effective," said Zhengcheng ?"John" Zhang, a senior chemist and group leader in Argonne's Chemical Sciences and Engineering division.

This low-temperature electrolyte shows promise of working for batteries in electric vehicles, as well as in energy storage for electric grids and consumer electronics like computers and phones.

In today's lithium-ion batteries, the electrolyte is a mixture of a widely available salt (lithium hexafluorophosphate) and carbonate solvents such as ethylene carbonate. The solvents dissolve the salt to form a liquid.

When a battery is charged, the liquid electrolyte shuttles lithium ions from the cathode (a lithium-containing oxide) to the anode (graphite). These ions migrate out of the cathode, then pass through the electrolyte on the way into the anode. While being transported through the electrolyte, they sit at the center of clusters of four or five solvent molecules.

During the initial few charges, these clusters strike the anode surface and form a protective layer called the solid-electrolyte interphase. Once formed, this layer acts like a filter. It allows only the lithium ions to pass through the layer while blocking the solvent molecules. In this way, the anode is able to store lithium atoms in the structure of the graphite on charge. Upon discharge, electrochemical reactions release electrons from the lithium that generate electricity that can power vehicles.

The problem is that in cold temperatures, the electrolyte with carbonate solvents begins to freeze. As a result, it loses the ability to transport lithium ions into the anode on charge. This is because the lithium ions are so tightly bound within the solvent clusters. Hence, these ions require much higher energy to evacuate their clusters and penetrate the interface layer than at room temperature. For that reason, scientists have been searching for a better solvent.

The team investigated several fluorine-containing solvents. They were able to identify the composition that had the lowest energy barrier for releasing lithium ions from the clusters at sub-zero temperature. They also determined at the atomic scale why that particular composition worked so well. It depended on the position of the fluorine atoms within each solvent molecule and their number.

In testing with laboratory cells, the team's fluorinated electrolyte retained stable energy storage capacity for 400 charge-discharge cycles at minus 4 F. Even at that sub-zero temperature, the capacity was equivalent to that of a cell with a conventional carbonate-based electrolyte at room temperature.

"Our research thus demonstrated how to tailor the atomic structure of electrolyte solvents to design new electrolytes for sub-zero temperatures," Zhang said.

The antifreeze electrolyte has a bonus property. It is much safer than the carbonate-based electrolytes that are currently used, since it will not catch fire.

"We are patenting our low-temperature and safer electrolyte and are now searching for an industrial partner to adapt it to one of their designs for lithium-ion batteries," Zhang said.

This research appears in Advanced Energy Materials. In addition to John Zhang, Argonne authors are Dong-Joo Yoo, Qian Liu and Minkyu Kim. Berkeley Lab authors are Orion Cohen and Kristin Persson.

This work was funded by the DOE Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office.

Research Report:Rational Design of Fluorinated Electrolytes for Low Temperature Lithium-Ion Batteries

Related Links
Argonne National Laboratory
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Intercalation-type Li-free cathodes for all solid-state batteries
Shanghai, China (SPX) May 16, 2023
The development of intercalation-type Li-free transition-metal-based cathodes and Li-metal anode paired all-solid-state batteries appears a viable alternative to overcome the energy density limitations faced by current rechargeable Li-ion technology. Besides, it is noteworthy that the rate-determining process that limits the power density of all-solid-state batteries is no longer in electrolyte component, but in the maximum resistance observed across the traditional Li-containing oxide cathode/el ... read more

ENERGY TECH
Private mission carrying Saudi astronauts launches to ISS

Private mission carrying first Saudi astronauts to visit ISS set for launch

Axiom Space's second crewed mission gets green light

Ax-2 crew carrying personal, cultural mementoes on launch to ISS

ENERGY TECH
Rocket Lab to launch small satellite swarm for NASA

Sales rocket for Zenno's fuel-free satellite pointing system

Virgin Orbit receives more than 30 indications of interest under court approved bid procedures

For 191st time, SpaceX booster successfully returns after launch

ENERGY TECH
A blancing act at Ubajara: Sol 3830

These sounds are out of this world

Perseverance images may show record of wild Martian river

Sitting still but not idling at Ubajara: Sols 3827-3829

ENERGY TECH
"Tianzhou Express" is online again, with five highlights

Tianzhou 6 docks with Tiangong space station

China's cargo craft Tianzhou 6 ready for launch

Tianzhou-5 cargo craft separates from China's space station

ENERGY TECH
Toshiba posts 35% decline in full-year net profit

Sidus Space selected by OneWeb to manufacture satellite hardware

Sidus Space expands global ground site network with new ATLAS contract

How NASA's work led to commercial spaceflight revolution

ENERGY TECH
Beauty brand Lush unveils new Green Hub but business comes first

EU targets fast fashion in push for durable goods

Team uses 3D printing to strengthen key material in aerospace and energy utilities

GPR announces Series A funding on back of customer traction

ENERGY TECH
Astronomers observe the first radiation belt seen outside of our solar system

Researchers uncover how primordial proteins formed on prebiotic earth

Bacteria survive on radioactive elements

Astronomers spot benzene in planet-forming disk around star for first time

ENERGY TECH
NASA's Juno mission closing in on Io

Pioneer 11, launched 50 years ago, helped solve mysteries of the universe

NASA: Up to 4 of Uranus' moons could have water

New video series captures team working on NASA's Europa Clipper

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.