. 24/7 Space News .
CHIP TECH
Air Force Research Lab poised to change the face of high-power electronics
by Staff Writers
Wright-Patterson AFB OH (SPX) Mar 27, 2019

What makes AFRL's Oxide MBE Laboratory ideal for this this type of materials research is that it is specifically and solely designed for the growth of gallium oxide. As Dorsey explained, contamination is a critical factor in the growth of quality crystals. Since the new MBE chamber will only be used for gallium oxide, there is no chance of cross-contamination that could degrade the material quality.

An emerging AFRL laboratory capability is charting a new course for electronics innovation.

The Oxide Molecular Beam Epitaxy laboratory is poised to become a major developer of high-quality semiconductor materials that are the basis for a new breed of lighter, smaller, more agile electronics.

At the center of the laboratory is the MBE chamber, a first-of-its-kind capability within the U.S. This highly-specialized piece of equipment enables the growth of semiconducting materials that can be used for specialized power electronics that are common in today's modern aircraft, as well as many consumer electronics.

"This is the first system of this kind specifically designed to grow gallium oxide, which is a promising new material for high-performance electronics," said Materials Research Engineer Dr. Don Dorsey.

Dorsey explains that while gallium oxide is not a new material, its recent discovery as an emerging electronic material means much remains to be learned about its properties and performance. Unlike commonly-used silicon-based semiconductors, gallium oxide can handle much higher operating voltages. As a result, it can be used very effectively for high-power, high-voltage applications.

What this means for aircraft electronics is that current components that are necessarily big and bulky could be made much smaller and lighter. Dorsey likens this to today's common laptop voltage converters.

"A simple example is the power adaptor located on the cords of laptop computers. We think the promise of this is that you could get rid of that entirely and have a small component on the circuit board that would do the same job." Dorsey explained that the AFRL team's work is geared toward similarly reducing the weight and size of Air Force systems.

What makes AFRL's Oxide MBE Laboratory ideal for this this type of materials research is that it is specifically and solely designed for the growth of gallium oxide. As Dorsey explained, contamination is a critical factor in the growth of quality crystals. Since the new MBE chamber will only be used for gallium oxide, there is no chance of cross-contamination that could degrade the material quality.

"This unique piece of equipment gives us an advantage," said Dorsey. "We are able to produce extremely pure samples and have the assurance that our material formulations are exactly as we intend them."

The MBE capability enables AFRL materials experts not only to produce high-quality semiconducting materials, but to further refine their production capabilities through a synergistic relationship with AFRL sensors researchers, who incorporate the materials into their electronic components.

The sensors experts then provide feedback to the materials team, who use that information to adjust the material growth in the MBE chamber. This back-and-forth process is helping the team to learn more about the formulations that produce the best quality semiconductors for application-specific purposes.

According to AFRL Materials Researcher Dr. Shin Mou, the MBE Laboratory also equips AFRL to bridge the gap between university and industry research efforts. "The capability to produce up to four-inch wafers enables us to work with university Centers of Excellence as well as industrial research organizations to advance the material capabilities and open new doors for this technology."

He explained that AFRL will be able to pull from the research conducted within academia, put the fundamental understanding into action to further develop wafer-scale materials, and transfer the knowledge to industrial partners for commercialization.

Mou explained that the long term goals for this work include refining the material to the point that it can be transferred to U.S. industry for large-scale production. Having a domestic supply chain for advanced semiconductors would ensure widespread, low-cost availability of these materials for both military and commercial use.

An important immediate step for the AFRL research team was the recent opening of the AFRL-Cornell Center for Epitaxial SolutionS, or ACCESS. This Center of Excellence, led by Cornell University in partnership with AFRL, will give Cornell students and faculty the opportunity to work closely with AFRL researchers and laboratories.

The knowledge base that grows out of ACCESS will go hand-in-hand with the ongoing AFRL efforts including the MBE research, resulting in a greater breadth of knowledge and expertise.

"We are excited about this collaboration with the university community," said Air Force Office of Scientific Research Program Officer, Dr. Ali Sayir.

"The Centers of Excellence provide a means by which we can facilitate and draw from student and faculty research, while at the same time introduce students to the AFRL community and potential professional opportunities within. This Center is aligned well with the AFOSR mission and investment strategy on ultra-wide band gap materials funded through AFOSR core grants and Office of the Secretary of Defense investment on several Multi-Disciplinary University Research Initiatives."

"This is a very exciting time in the evolution of this technology," said Dorsey of the new MBE lab and university partnership. "These are major enablers for the advancement of these capabilities. The work we're doing will be a major step toward a new breed of high-power electronics to better enable the warfighter for tomorrow's challenges."


Related Links
Air Force Research Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
Extremely accurate measurements of atom states for quantum computing
University Park PA (SPX) Mar 27, 2019
A new method allows the quantum state of atomic "qubits" - the basic unit of information in quantum computers - to be measured with twenty times less error than was previously possible, without losing any atoms. Accurately measuring qubit states, which are analogous to the one or zero states of bits in traditional computing, is a vital step in the development of quantum computers. A paper describing the method by researchers at Penn State appears March 25, 2019 in the journal Nature Physics. "We a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
US Asked Russia to Delay Soyuz MS-13 July Launch to ISS for Two Weeks - Source

ESA studies water in space

Spacewalkers Complete Battery Swaps for Station Power Upgrades

The time to apply to space for humanity is now!

CHIP TECH
More efficient satellite launch platform on the horizon

Sunrise and Phase Four partner for Next-gen electric propulsion

China's first privately funded orbital rocket fails

First 2019 launch from Vostochny Space Centre slated for 27 June

CHIP TECH
Laser blasts show asteroid bombardment, hydrogen make great recipe for life on Mars

Google and Haughton-Mars Project Partner on Moon-Mars Exploration Prep

ExoMars landing platform arrives in Europe with a name

NASA's Mars 2020 rover is put to the test

CHIP TECH
Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

China's lunar rover studies stones on moon's far side

China improves Long March-6 rocket for growing commercial launches

CHIP TECH
Inmarsat agrees to $3.4 bn takeover from consortium

OneWeb starts to mass-produce satellites in Florida

UAE announces pan-Arab body for space programme

Lockheed Martin develops world-first LTE-Over-Satellite System

CHIP TECH
Vector's GalacticSky GSky-1 satellite ready for launch later this year

Sun-Synchronous Orbits are Obsolete

Virtual reality enables real-time, internal view of patient anatomy during treatment

New virtual reality tool allows you to see the world through the eyes of a tiny primate

CHIP TECH
Icy giant planets in the laboratory

Neural Networks Predict Planet Mass

Astrobiology seminar aims to inspire a look into the bounds of life

Carbon monoxide detectors could warn of extraterrestrial life

CHIP TECH
Jupiter's unknown journey revealed

A Prehistoric Mystery in the Kuiper Belt

Ultima Thule in 3D

SwRI-led New Horizons research indicates small Kuiper Belt objects are surprisingly rare









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.