24/7 Space News
Aeolus: a historic end to a trailblazing mission
Chart showing the reentry profile for Aeolus.
Aeolus: a historic end to a trailblazing mission
by Staff Writers
Paris (ESA) Jul 28, 2023

Aeolus - ESA's wind mission - reentered Earth's atmosphere on 28 July at around 21:00 CEST above Antarctica, confirmed by US Space Command.

The reentry comes after a series of complex manoeuvres that lowered Aeolus' orbit from an altitude of 320 km to just 120 km to reenter the atmosphere and burn up.

Crucially, these manoeuvres - the first assisted reentry of its kind - positioned Aeolus so that any pieces that may not have burned up in the atmosphere would fall within the satellite's planned Atlantic ground tracks.

Today, satellite missions are designed according to regulations that require them to minimise the risk of causing damage on their return to Earth. This would typically be achieved by the majority of the satellite burning up on reentry or through a controlled reentry at the end of their lives in orbit.

However, when Aeolus was designed back in the late 1990s no such regulations were in place.

So, after running out of fuel and without intervention, Aeolus would have reentered Earth's atmosphere naturally within a few weeks from now - but with no control over where this would happen.

Satellites and rocket parts fall back to Earth roughly once a week, and pieces that survive have only very rarely caused any damage, so the risk of Aeolus causing harm was always incredibly small. In fact, the chance of being struck by a piece of debris is three times less than being struck by a meteorite.

Nevertheless, ESA went above and beyond for Aeolus and attempted a new way of assisting its reentry to make it even safer.

Essentially trying to make a satellite do what it was never designed to do involved a huge amount of thinking and a lot of planning.

Then, over the last week, the team of spacecraft engineers, flight dynamics experts and space debris specialists at ESA's ESOC mission control centre in Germany set to work. They used the satellite's remaining fuel to carry out a series of burns to lower Aeolus and place it into the best position to reenter.

And they pulled it off - with Aeolus reentering in line with current regulations.

ESA's Director of Operations, Rolf Densing, said, "The teams have achieved something remarkable. These manoeuvres were complex, and Aeolus was not designed to perform them, and there was always a possibility that this first attempt at an assisted reentry might not work.

"The Aeolus reentry was always going to be very low risk, but we wanted to push the boundaries and reduce the risk further, demonstrating our commitment to ESA's Zero Debris approach.

"We have learned a great deal from this success and can potentially apply the same approach for some other satellites at the end of their lives, launched before the current disposal measures were in place."

This assisted reentry is just one part of ESA's wider commitment to the long-term safety and sustainability of space activities. By 2030, all ESA missions will be 'debris neutral' - thanks to the Zero Debris Charter, the Agency is making sure the technology is ready not just for present-day regulations, but to make possible even more ambitious rules for the future.

From deorbiting kits launched with missions to bring them down safely, to flagship missions like Clearspace-1 that will capture stranded spacecraft in orbit and technologies to limit risks on the ground, ESA is leading the way in sustainable space.

Aeolus: the impossible mission
Aeolus has been a challenging mission - its pioneering laser technology took many years to develop. But after a number of setbacks, Aeolus was finally launched in 2018 to profile Earth's winds and went on to be one of ESA's most successful Earth observation research missions.

Aeolus carried an instrument known as ALADIN, which is Europe's most sophisticated Doppler wind lidar flown in space.

Its laser fired pulses of ultraviolet light towards Earth's atmosphere. This light bounced off air molecules and particles such as dust in the atmosphere. The small fraction of light that scattered back towards the satellite was collected by a large telescope.

Through the measurement of the Doppler shifts in the return signals, the horizontal speed of the wind in the lowermost 30 km of the atmosphere was derived, making Aeolus the first satellite mission to deliver profiles of Earth's wind on a global scale.

The mission, an ESA Earth Explorer research mission, was designed to demonstrate that this technology was feasible - but it did more than that.

ESA's Director of Earth Observation Programmes, Simonetta Cheli, said, "Aeolus has been truly outstanding. Indeed, the technology was difficult to develop but we have seen huge returns.

"It not only benefited science in terms of contributing to climate research, but its data were used operationally in weather forecasts, which proved essential during the Covid lockdown when aircraft, which carry weather instruments, were grounded.

A 2022 report by London Economics found that Aeolus also brought real economic benefits - as much as euro 3.5 billion over the lifetime of the mission.

"We are extremely proud of Aeolus and the many people who made its development, its life in orbit, its data use and its safe end possible. And now, with the experience gained from the first Aeolus, our focus turns to its follow-on, Aeolus-2, which is an operational meteorological mission we are developing with Eumetsat, Europe's Organisation for the Exploitation of Meteorological Satellites."

Related Links
Aeolus at ESA
Space Technology News - Applications and Research

Subscribe Free To Our Daily Newsletters

The following news reports may link to other Space Media Network websites.
Wind River VxWorks software chosen for Astroscale's Space Debris Solution ELSA-M
Sydney, Australia (SPX) Jul 20, 2023
Wind River, an industry leader in intelligent system software, has announced that its VxWorks software will be utilized in the command of the Astroscale ELSA-M Servicer spacecraft's On-Board Computer (OBC). This announcement reflects Wind River's ongoing commitment to supporting the unique challenges and complexities of space missions. Astroscale, a company dedicated to developing innovative solutions for sustainable space systems, is tackling the growing issue of space debris. The company's ELSA- ... read more

NASA hears 'heartbeat' from Voyager 2 after inadvertant blackout

Science enabling heat and air conditioning for long-term space habitats is almost fully available

Bartolomeo is the easy way of bringing payloads to space stations

NASA Named One of America's Top Employers for Women

The world's largest ComSat ever built launches on a SpaceX Falcon Heavy rocket

Marotta Controls Delivers 30,000th CoRe Valve to SpaceX

SpaceX successfully launches 22 Starlink satellites

SpaceX misses attempt for record-breaking 'double-launch' attempt

Deep Impact: Sol 3899

Making the Most of Limited Power: Sols 3900-3901

Frosty the ChemCam: Sols 3902-3904

Making the most of limited power: Sols 3900-3901

Shenzhou 15 crew share memorable moments from Tiangong Station mission

China's Space Station Opens Doors to Global Scientific Community

China's Lunar Mission targets manned landing by 2030

Shenzhou XVI crew set to conduct their first EVA

JUPITER 3 set to revolutionize satellite connectivity across the Americas

New Heights for Satellite Communication: Iridium Launches Certus for Aviation

Iridium Board of Directors approves additional share repurchase program

Leaf Space secures additional edging closer to seamless satellite connectivity

Aeolus: a historic end to a trailblazing mission

European wind-mapping satellite returned safely to Earth

Mystery object on Australian beach identified as part of Indian rocket

China imposes export curbs on critical metals, drones

Using cosmic weather to study which worlds could support life

Violent Atmosphere Gives Rare Look at Early Planetary Life

Water discovered in rocky planet-forming zone offers clues on habitability

NASA lab hopes to find life's building blocks in asteroid sample

NASA's Juno Is Getting Ever Closer to Jupiter's Moon Io

James Webb Space Telescope sees Jupiter moons in a new light

SwRI team identifies giant swirling waves at the edge of Jupiter's magnetosphere

First ultraviolet data collected by ESA's JUICE mission

Subscribe Free To Our Daily Newsletters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.