. 24/7 Space News .
IRON AND ICE
A population of asteroids of interstellar origin inhabits the Solar System
by Staff Writers
Sao Paulo, Brazil (SPX) Jul 17, 2020

Composition made by the researcher of an artistic image from NASA used to show what the primordial solar system would be like, with the addition of a Centaur in polar orbit in the outer region.

A study conducted by scientists at Sao Paulo State University's Institute of Geosciences and Exact Sciences (IGCE-UNESP) in Rio Claro, Brazil, has identified 19 asteroids of interstellar origin classified as Centaurs, outer Solar System objects that revolve around the Sun in the region between the orbits of Jupiter and Neptune.

An article on the study titled "An interstellar origin for high-inclination Centaurs" is published in the Royal Astronomical Society's Monthly Notices. The study was supported by Sao Paulo Research Foundation (FAPESP) - FAPESP.

"The Solar System formed 4.5 billion years ago in a stellar nursery, with its systems of planets and asteroids. The stars were close enough to each other to foster strong gravitational interactions that led to an exchange of material among the systems. Some objects now in the Solar System must therefore have formed around other stars. Until recently, however, we couldn't distinguish between captured interstellar objects and objects that formed around the Sun. The first identification was made by us in 2018," Maria Helena Moreira Morais , one of the two coauthors, told.

Morais graduated in physics and applied mathematics from the University of Porto (Portugal) and earned a PhD in Solar System dynamics from the University of London (UK). She is currently a professor at IGCE-UNESP. The other coauthor is Fathi Namouni, a researcher at Cote d'Azur Observatory in Nice, France.

The first identification to which Morais referred was the asteroid 514107 Ka'epaoka'awela, as reported by Agencia FAPESP in 2018.

The name Ka'epaoka'awela is Hawaiian and can be roughly translated to "mischievous opposite-moving companion of Jupiter". It has occupied the path corresponding to Jupiter's orbit for at least 4.5 billion years but revolves around the Sun in the direction opposite to that of the planets, i.e., it is a retrograde co-orbital asteroid of Jupiter.

"When we identified it as an object that came from outside the Solar System, we didn't know whether it was an isolated case or part of a vast population of immigrant asteroids," Morais said. "In this latest study, we recognized 19 Centaurs of interstellar origin."

Similar to Ka'epaoka'awela, the Centaurs identified in the study have highly inclined orbits with respect to the orbital plane of the planets. "To investigate the origin of these objects, we built a computer simulation that works like a time machine, running their trajectories backwards by 4.5 billion years. The simulation enabled us to find out where these objects were at that time," Morais said.

The planets and asteroids that originated in the Solar System emerged from a thin disk of gas and dust that once orbited the Sun. For this reason, they all moved in the plane of the disk 4.5 billion years ago. If the Centaurs originated in the Solar System, they should also have moved in the plane of the disk at that time. "However, our simulation showed that 4.5 billion years ago, these objects revolved around the Sun in orbits perpendicular to the disk's plane. In addition, they did so in a region distant from the gravitational effects of the original disk," Morais said.

These two findings showed that the Centaurs did not originally belong to the Solar System and must have been captured from nearby stars during the period of planet formation.

Star nursery
The discovery in the Solar System of a population of asteroids of interstellar origin is a major step in the understanding of the differences and similarities between objects that formed in the Solar System and objects in the Solar System that were originally extrasolar. Future astronomic observations and possibly space missions will deepen this understanding. "Studies of this population will bring to light information about the star nursery from which the Sun emerged, the capture of interstellar objects in the primordial Solar System, and the importance of interstellar matter to the chemical enrichment of the Solar System," Morais said.

With regard to chemical enrichment, it is worth recalling that the primordial Universe mainly comprised hydrogen and helium. The lightest natural elements in the periodic table were created by nuclear fusion inside stars and were then spread out through space. The region in which the Solar System is located was chemically enriched by these elements, which contributed to the composition of the human body.

Research Report: "An interstellar origin for high-inclination Centaurs"


Related Links
Fundacao De Amparo a Pesquisa Do Estado De Sao Paulo
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Designing better asteroid explorers
Rochester UK (SPX) Jul 15, 2020
Recent NASA missions to asteroids have gathered important data about the early evolution of our Solar System, planet formation, and how life may have originated on Earth. These missions also provide crucial information to deflect asteroids that could hit Earth. Missions like the OSIRIS-REx mission to Asteroid Bennu and the Hyabusa II mission to Ryugu, are often conducted by robotic explorers that send images back to Earth showing complex asteroid surfaces with cracked, perched boulders and rubble ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Astronauts add expertise, refine space station science in orbit

Duckweed is an incredible, radiation-fighting astronaut food

Astronauts conclude third spacewalk on historic SpaceX mission

From the Moon to Mars: China's march across space

IRON AND ICE
Spaceflight unveils next-gen orbital transfer vehicle to fly aboard SpaceX mission

Southern Launch prepares for lift off In South Australia

Soyuz Launches From Kourou to Resume in October, German Aerospace Centre Says

New electric propulsion chamber explores the future of space travel

IRON AND ICE
UAE again delays Mars probe launch over weather

The quest to find signs of ancient life on Mars

NASA's InSight Flexes Its Arm While Its 'Mole' Hits Pause

Emirates Mars Mission to launch with ASU instrument

IRON AND ICE
Tianwen 1 probe to soon blast off for Mars

China's newest carrier rocket fails in debut mission

China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

IRON AND ICE
Satellite for US Air Force launched as part of L3Harris' Responsive Constellation Contract

SpaceX delays launch of mini-satellites

Airbus expands its SpaceDataHighway with second satellite

Columbus gets a new European science rack

IRON AND ICE
NASA's Deep Space Station in Australia Is Getting an Upgrade

Shock-dissipating fractal cubes could forge high-tech armor

Programmable balloons pave the way for new shape-morphing devices

Portable system boosts laser precision, at room temperature

IRON AND ICE
Artificial intelligence predicts which planetary systems will survive

'Disk Detective' Needs Your Help Finding Disks Where Planets Form

NASA Awards SETI Institute Contract for Planetary Protection Support

Supercomputer reveals atmospheric impact of gigantic planetary collisions

IRON AND ICE
Subaru Telescope and New Horizons explore the outer Solar System

The collective power of the solar system's dark, icy bodies

Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.