. 24/7 Space News .
CARBON WORLDS
A new method for the functionalization of graphene
by Staff Writers
Quebec City, Canada (SPX) Dec 17, 2020

illustration only

An international research team involving Professor Federico Rosei of the Institut national de la recherche scientifique (INRS) has demonstrated a novel process to modify the structure and properties of graphene, a one atom thick carbon.

This chemical reaction, known as photocycloaddition, modifies the bonds between atoms using ultraviolet (UV) light. The results of the study were recently published in the prestigious journal Nature Chemistry.

Graphene has outstanding physical, optical and mechanical properties. For instance, it is commonly used in the manufacture of transparent touch screens, in aerospace, and in biomedicine. This material, however, has limited use in electronics.

"No other material has properties similar to graphene, yet unlike semiconductors used in electronics, it lacks a band gap. In electronics, this gap is a space in which there are no energy levels that can be occupied by electrons. Yet it is essential for interacting with light," explains Professor Federico Rosei of INRS's Energie Materiaux Telecommunications Research Centre.

"The multidisciplinary group of researchers from Canada, China, Denmark, France and the United Kingdom succeeded in modifying graphene so as to create a band gap. Current research is rather fundamental but could have repercussions over the next few years in optoelectronics, such as in the fabrication of photodetectors or in the field of solar energy.

"These include the manufacture of high-performance photovoltaic cells for converting solar energy into electricity, or the field of nanoelectronics, for the extreme miniaturisation of devices," emphasizes Professor Rosei.

This breakthrough is complementary to the results published in Nature Materials, in May 2020, by an Italian-Canadian team of researchers under the supervision of Professor Rosei.

Professor Rosei's research has been recognized numerous times by national and international awards and distinctions. These include the recent Brimacombe Medal from the Minerals, Metals and Materials Society (TMS), the Royal Society of Chemistry, which identified him as one of the 5% most cited authors for its journals in 2019, and the Stanford list of the 2% most cited researchers in the world.

Research Report: "Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition"


Related Links
Institut national de la recherche scientifique
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
New fullerene crystal production method 50 times faster than predecessor
Yokohama, Japan (SPX) Dec 16, 2020
Researchers from Yokohama National University and the University of Electro-Communications in Japan have developed a highly efficient technique for producing a unique fullerene crystal, called fullerene finned-micropillar (FFMP), that is of significant use for next-generation electronics. Fullerene is a popular choice for developing technologies not only due to its small size, it is also very durable and contains semiconductor properties, making it a good candidate in devices such as field-effect ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA awards contract for Cold Stowage II

Russian cosmonaut says new air leak on ISS Zvezda module not critical

Spinoff highlights NASA technology paying dividends in US economy

Fertilizer made from urine could enable space agriculture

CARBON WORLDS
SLS team completes propellant loading of Core Stage during Green Run test

Loss of Vega flight VV17 report issued

Long March 8 rocket makes maiden flight

NASA awards contract for Global Hawk Skyrange program

CARBON WORLDS
A Martian Roundtrip: NASA's Perseverance Rover Sample Tubes

NASA video shows Perseverance rover's planned 'terror' landing on Mars

How to get people from Earth to Mars and safely back again

NASA moves forward with campaign to return Mars samples to Earth

CARBON WORLDS
China plans to launch four manned spacecraft in next two years

China's Chang'e-5 orbiter embarks on new mission to gravitationally stable spot at L1

Mission accomplished, now on to the next: China Daily editorial

China prepares to launch Long March-8 Y1 rocket

CARBON WORLDS
Voyager Space Holdings to buy all of Nanoracks

Hughes selected by OneWeb for Ground system development and production under new $250 million contract

Lockheed Martin To Acquire Aerojet Rocketdyne

Russia lifts UK telecom satellites into orbit

CARBON WORLDS
Space bauble

NTU Singapore scientists invent glue activated by magnetic field

Astroscale Ships ELSA-d Spacecraft to Launch Site

Scientists and philosopher team up, propose a new way to categorize minerals

CARBON WORLDS
Astronomers detect possible radio emission from exoplanet

Key building block for organic molecules discovered in meteorites

Device mimics life's first steps in outer space

Scientists discover compounds that could have helped to start life on Earth

CARBON WORLDS
Dark Storm on Neptune reverses direction, possibly shedding a fragment

The 'Great' Conjunction of Jupiter and Saturn

NASA's Juno Spacecraft Updates Quarter-Century Jupiter Mystery

Swedish space instrument participates in the search for life around Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.