. 24/7 Space News .
EARLY EARTH
A mineral blueprint for finding Burgess Shale-type fossils
by Staff Writers
New Haven CT (SPX) Feb 19, 2018

Marrella, the most common fossil from the Cambrian Burgess Shale in British Columbia (508 million years old) is a small arthropod less than 2 cm long. Researchers have identified a mineral signature for sites that are more likely to contain fossils that preserve evidence of soft tissue.

Scientists have identified a mineral signature for sites that are more likely to contain rare fossils that preserve evidence of soft tissue - essential information to understanding ancient life.

Much of what we know about the earliest life on Earth comes from the organic remains of organisms without hard parts. Yet the vast majority of fossils rely on hard tissue such as shells, teeth, and bones for their preservation. Soft tissue parts, such as eyes and internal organs, tend to decay before they can fossilize. This also is true for organisms made up entirely of soft tissue, such as worms.

A major exception to this is the Burgess Shale in Canada, a 508 million-year-old deposit that contains a trove of fossils, some with shells but the majority without, from the Cambrian explosion of animal diversity on Earth. The Burgess Shale and similar deposits have provided the basis for a wellspring of scientific research.

In a new study published in the journal Geology, researchers at Yale, Oxford, and Pomona College suggest that the sedimentary rocks that contain these fossils carry a specific signature - which can be used to find other Burgess Shale-type deposits.

"This discovery is important because it will help us to narrow the search for exceptionally preserved fossils in thick sequences of Cambrian and Precambrian rocks, which harbor critical clues to the early evolution of animal life on Earth," said co-author Derek Briggs, Yale's G. Evelyn Hutchinson Professor of Geology and Geophysics and curator at the Yale Peabody Museum of Natural History.

The first author of the study is Ross Anderson of Oxford, a former graduate student at Yale. Additional authors are Nicolas Mongiardino-Koch of Yale, Nicholas Tosca of Oxford, and Robert Gaines of Pomona College.

The researchers examined more than 200 Cambrian rock samples using powder X-ray diffraction analysis to determine their mineralogical composition, comparing rocks containing Burgess Shale-type fossils that include preserved soft-tissues with those that only contained their fossilized shells or skeletons.

The findings revealed that Burgess Shale-type deposits are generally found in rocks rich in the mineral berthierine, one of the main clay minerals identified by a previous study as being toxic to decay bacteria. "Berthierine is an interesting mineral because it forms in tropical settings when the sediments contain elevated concentrations of iron," Anderson said. "This means that Burgess Shale-type fossils are likely confined to rocks that were formed at tropical latitudes and that come from locations or time periods that have enhanced iron."

The researchers identified a mineral signature that enabled them to predict with 80% accuracy whether a particular Cambrian sedimentary rock is likely to contain Burgess Shale-type fossils.

In addition, the researchers said their findings may have applications beyond our own planet. Mars probes and other space missions looking for evidence of life on other planets could use the mineral blueprint in the search for types of rocks that might be more conducive to preserving delicate, decay-prone fossils.


Related Links
Yale University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Beewolves have been successfully using the same antibiotics for 68 million years
Mainz, Germany (SPX) Feb 13, 2018
The discovery of penicillin about 90 years ago and the widespread introduction of antibiotics to combat infectious diseases have revolutionized human medicine. However, in recent decades, the increase in multidrug-resistant pathogens has confronted modern medicine with massive problems. Insects have their own antibiotics, which provide natural protection against germs. A team of scientists from the Johannes Gutenberg University in Mainz and the Max Planck Institute for Chemical Ecology in Jena hav ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Holograms and mermaids: Top trends at Nuremberg toy fair

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

All-in-one service for the Space Station

EARLY EARTH
Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

Japan Successfully Launches World's Smallest Carrier Rocket

EARLY EARTH
Leaky Atmosphere Linked To Lightweight Planet

Mars Opportunity Rover Energy Levels Improve

In Oman desert, European venture sets sights on Mars

Mars Reconnaissance Orbiter preparing for years ahead

EARLY EARTH
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

EARLY EARTH
Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

GovSat-1 Successfully Launched on SpaceX Falcon 9 Rocket

EARLY EARTH
Recreating outer space in the lab

Super wood could replace steel

Scientists can now 3D print nanoscale metal structures

A new radiation detector made from graphene

EARLY EARTH
'Oumuamua has been tumbling about the galaxy for a billion years

UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

Are you rocky or are you gassy

EARLY EARTH
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.