24/7 Space News
CHIP TECH
A faster, more reliable method for simulating the plasmas used to make computer chips
illustration only
A faster, more reliable method for simulating the plasmas used to make computer chips
by Rachel Kremen
Plainsboro NJ (SPX) May 26, 2025

Plasma - the electrically charged fourth state of matter - is at the heart of many important industrial processes, including those used to make computer chips and coat materials. Simulating those plasmas can be challenging, however, because millions of math operations must be performed for thousands of points in the simulation, many times per second. Even with the world's fastest supercomputers, scientists have struggled to create a kinetic simulation - which considers individual particles - that is detailed and fast enough to help them improve those manufacturing processes.

Now, a new method offers improved stability and efficiency for kinetic simulations of what's known as inductively coupled plasmas. The method was implemented in a code developed as part of a private-public partnership between the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and chip equipment maker Applied Materials Inc., which is already using the tool. Researchers from the University of Alberta, PPPL and Los Alamos National Laboratory contributed to the project.

Detailed simulations of these plasmas are important to gain a better understanding of how plasma forms and evolves for various manufacturing processes. The more realistic the simulation, the more accurate the distribution functions it provides. These measures show, for example, the probability that a particle is at a particular location moving at a particular speed. Ultimately, understanding these details could lead to realizations about how to use the plasma in a more refined way to etch patterns onto silicon for even faster chips or memory with greater storage, for example.

"This is a big step forward in our capabilities," said Igor Kaganovich, a principal research physicist at PPPL and co-author of a journal article published in Physics of Plasmas that details the simulation findings.

Making the code reliable

The initial version of the code was developed using an old method that proved unreliable. Dmytro Sydorenko, a research associate at the University of Alberta and first author of the paper, said that significant modifications of the method were made to make the code much more stable. "We changed the equations, so the simulation immediately became very reliable and there were no crashes anymore," he said. "So now we have a usable tool for the simulation of inductively coupled plasmas into two spatial dimensions."

The code was improved, in part, by changing the way one of the electric fields was calculated. An electric field is like an invisible force field that surrounds electric charges and currents. It exerts forces on particles. In an inductively coupled plasma, a wire coil carrying an electric current generates a changing magnetic field, which, in turn, generates an electric field that heats the plasma. It is this field, known as the solenoidal electric field, that the team focused its efforts on.

The code calculates electromagnetic fields based on procedures developed by Salomon Janhunen from Los Alamos National Laboratory. These procedures were optimized by PPPL's Jin Chen, who acted as a bridge between physics, mathematics and computer science aspects of the challenge. "For a complicated problem, the improvement is significant," Chen said.

The simulation is known as a particle-in-cell code because it tracks individual particles (or small groups of particles clumped together as so-called macroparticles) while they move in space from one grid cell to another. This approach works particularly well for the plasmas used in industrial devices where the gas pressure is low. A fluid approach doesn't work for such plasmas because it uses average values instead of tracking individual particles.

Obeying the law of conservation of energy

"This new simulation allows us to model larger plasmas quickly while accurately conserving energy, helping to ensure the results reflect real physical processes rather than numerical artifacts," said Kaganovich.

In the real world, energy doesn't randomly appear or disappear. It follows the law of conservation of energy. But a small mistake in a computer simulation can accumulate with each step. Because each simulation might involve thousands or even millions of steps, a small error throws off the results significantly. Making sure energy is conserved helps keep the simulation faithful to a real plasma.

Research Report:Simulation of an inductively coupled plasma with a two-dimensional Darwin particle-in-cell code

Related Links
Princeton Plasma Physics Laboratory
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CHIP TECH
How the US-China chip conflict is evolving under Trump
Beijing (AFP) May 23, 2025
The United States has taken aim at China's Huawei over the cutting-edge chips powering artificial intelligence (AI), part of a shifting technology dispute between the two largest economies. AFP looks at how the US-China chip war is evolving under US President Donald Trump: - Focus back on China - A US government statement this month showed how the Trump administration is seeking to change the ways the US limits China's access to state-of-the-art semiconductors needed to develop AI. The U ... read more

CHIP TECH
Chinese students lament US plans to block visas

Hong Kong to open universities to more foreign students after US ban

At Houston event, NASA astronauts will discuss their recent space station missions

Space tourism's growth blurs the line between scientific and symbolic achievement

CHIP TECH
Starship tumbles back to Ocean after reaching a nominal orbit

After two setbacks, SpaceX could try to launch massive Starship next week

After brief X outage, Musk says refocusing on businesses

SpaceX mega-rocket Starship 9 cleared for launch following earlier mission failures

CHIP TECH
NASA's Perseverance Mars Rover to Take Bite Out of 'Krokodillen'`

UT Austin Researchers Uncover Key Link in Early Martian Water Cycle

What Martian Craters Reveal About the Red Planet's Subsurface

Is Terraforming Mars a Realistic Goal?

CHIP TECH
China Establishes UN-SPIDER Regional Support Office at Wuhan University

Tiangong returns largest sample set yet for biological and materials science research

Space is a place to found a community not a colony

China's Shenzhou-19 astronauts return to Earth

CHIP TECH
SpaceX sends up more Starlink satellites from California

SpaceX deploys 23 Starlink satellites in first launch for new Falcon 9 booster

China's Satellite Navigation Industry Reaches $79.9 Billion in 2024

Making Satellite-Based Real-Time Data Processing a Global Reality

CHIP TECH
Gold and precious metals traced to Earth's core in Hawaiian lava

World first 3D printed soft robots walk off the printer fully formed

Virtual Reality Could Revolutionize Recycling Workforce Training

Laser technique revolutionizes ultra-high temperature ceramic manufacturing for space, defense applications

CHIP TECH
Doubt cast on claim of 'hints' of life on faraway planet

Nanodevice Sheds Light on Early Cyanobacterial Evolution

Twin Star Systems May Hold Key to Planet Formation Insights

Webb Finds First Clear Evidence of Frozen Water in Young Star System

CHIP TECH
The hunt for mysterious 'Planet Nine' offers up a surprise

SwRI Gathers First Ultraviolet Data from NASA's Europa Clipper Mission

Webb Uncovers New Mysteries in Jupiter's Aurora

Juno reveals subsurface secrets of Jupiter and Io

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.