. 24/7 Space News .
IRON AND ICE
A solar-powered asteroid nursery at the orbit of Mars
by Staff Writers
Armagh UK (SPX) Oct 19, 2017


Depiction of the planet Mars and its retinue of Trojans circling around the Lagrange points L4 and L5. The dashed curve represents the planet's orbit. Eureka, the red point at L5, is accompanied by seven smaller asteroids (amber), forming a family. Indicated in blue are, on the right, the remaining L5 Trojan (1998 VF31) and, on the left, the only known Trojan at L4 (1999 UJ7). Top Right: Enlargement of the region around L5 highlighting Eureka and the smaller family Trojans. Figure credit: Apostolos Christou

The planet Mars shares its orbit with a handful of small asteroids, the so-called Trojans. Among them, one finds a unique group, all moving in very similar orbits, suggesting that they originated from the same object. But the mechanism that produced this "family" has been a mystery.

Now, an international team of astronomers believe they have identified the culprit: sunlight. Their findings, which highlight how small asteroids near the Sun may evolve, are to be presented at the annual Meeting of the Division for Planetary Sciences of the American Astronomical Society at Provo, Utah, this week, by Dr. Apostolos Christou, a Research Astronomer at the Armagh Observatory and Planetarium in Northern Ireland, United Kingdom, and leader of the research team.

Trojan asteroids are trapped within gravitational "safe havens" 60 degrees in front of and behind the planet. The point leading the planet is L4; that trailing the planet is L5. Mars is the only terrestrial planet known to have Trojan companions in stable orbits. The first Mars Trojan, discovered over 25 years ago at L5, was named "Eureka" in reference to the famous exclamation by ancient Greek mathematician Archimedes. The present tally is only 10, but even this relatively meager sample shows interesting structure not seen elsewhere.

For starters, all the Trojans, save one, are trailing Mars at its L5 Lagrange point. What's more, the orbits of all but one of the L5 Trojans form a tight group, with 2-km sized Eureka its largest member and including objects as small as a few hundred meters.

The team have been working to determine how the family came to be. For instance, collisions that occurred hundreds of millions of years ago formed similar families in the asteroid belt between Mars and Jupiter. But an impact origin does not quite fit with what we know about these Trojans.

As Christou points out: "This family is incredibly compact. Only the gentlest of impacts, with the fragments barely able to escape Eureka's gravity, would work. Also, we know that the Yarkovsky effect, a tiny acceleration driven by absorbed and re-emitted sunlight on the asteroid, would cause family members to drift away over about a billion years. What our models show, instead, is that even impacts with just enough energy to break up Eureka are so rare that they may not happen over the age of the solar system."

Taking a step back, the team then adopted a different approach, looking at the Martian Trojans as a whole instead of focusing on the family. From this perspective, the lack of a family around the two remaining Mars Trojans, (101429) 1998 VF31 at L5 and (121514) 1999 UJ7 at L4, becomes an important clue to this puzzle. Christou explains: "These two asteroids are at the same distance from the Sun and of similar size to Eureka, yet we don't see asteroids grouping up near them. We believe this is telling us something about how families can or can't form at Mars's distance from the Sun."

That "something" is very likely rotational fission, driven by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect - a sister effect to Yarkovsky and also driven by sunlight but changing the asteroid's rotation rather than the orbit. This is causing Eureka to spin up, eventually spawning off pieces of itself that escape to become independent asteroids orbiting the Sun.

Interestingly, Eureka rotates once every two-and-a-half hours, about as fast as an asteroid can spin without coming apart; and recently the team observed the L4 asteroid, 1999 UJ7, finding that it spins 20 times slower, or once every 2 days. Other slow-spinning asteroids of this size are found to be in a "tumbling" state where - at least in theory - YORP may "switch off." UJ7 may, therefore, be simply incapable of producing new asteroids through fission.

This explanation, however, does not work for 1998 VF31, the remaining Trojan at L5, which the team found to rotate once every 8 hours, not slow enough to prevent YORP from spinning it up to the point of fission. But since we don't see the new asteroids, something must be happening to them after they leave VF31.

To find out what, Christou ran a computer simulation, following the orbits of virtual asteroids or clones produced by both VF31 and Eureka under the Yarkovsky effect. He discovered that, whereas Eureka "offspring" survive at L5 for more than a billion years, VF31 is sitting next to a dynamical "escape hatch" allowing any bits breaking off it to escape within only 200 to 300 million years. So, akin to water draining out of an unplugged washbasin, objects separating from VF31 would escape quickly, leaving its vicinity clear of asteroids. The result: no family.

Given the evidence in hand the fission hypothesis appears compelling, but Christou cautions that this is far from a closed-and-shut case; only time and more work will tell if the conclusion is correct. To test their theory, they plan to look for fainter Trojans, 100 metres across or less. "We don't currently see those, but a dedicated survey should detect them. Finding many small Trojans near Eureka, perhaps a few near VF31 but none at UJ7 would strongly indicate that we got it right."

Ultimately, the work may have implications well beyond the solving of this little puzzle. Close to the Sun, YORP-induced fission - essentially the action of sunlight - may be as important for driving asteroid evolution as collisions. Indeed, Christou speculates that, if any stable Trojans of our own planet exist, YORP may turn them into a source of new near-Earth objects. "But that's another story," he concludes.

IRON AND ICE
Asteroid Tracking Network Observes Close Approach
Pasadena CA (JPL) Oct 16, 2017
On Oct. 12 EDT (Oct. 11 PDT), a small asteroid designated 2012 TC4 will safely pass by Earth at a distance of approximately 26,000 miles (42,000 kilometers). This is a little over one tenth the distance to the Moon and just above the orbital altitude of communications satellites. This encounter with TC4 is being used by asteroid trackers around the world to test their ability to operate as a coo ... read more

Related Links
Armagh Observatory In Northern Ireland
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Russia launches cargo ship to space station

Roscosmos: International Space Exploration to Continue Despite Geopolitical Situation

US spacewalkers install 'new eyes' at space station

NASA May Extend BEAM's Time on the International Space Station

IRON AND ICE
First Four Space Launch System Flight Engines Ready To Rumble

Rocket motor for Ariane 6 and Vega-C is cast for testing

RS-25 Engines Ready for Maiden Flight of NASA's Space Launch System

Russia May Adjust Space Program to Construct Super-Heavy Carrier Rocket

IRON AND ICE
What NASA's simulated missions tell us about the need for Martian law

Mimetic Martian water is highly pressurized, experiments show

Debate over Mars exploration strategy heats up in astrobiology journal

Webcam on Mars Express surveys high-altitude clouds

IRON AND ICE
China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

China's cargo spacecraft separates from Tiangong-2 space lab

IRON AND ICE
Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

Lockheed Martin Completes First Flexible Solar Array for LM 2100 Satellite

IRON AND ICE
Understanding rare earth emulsions

Missing link between new topological phases of matter discovered

Space radiation won't stop NASA's human exploration

Saab upgrading Norwegian radars under NATO contract

IRON AND ICE
Astronomers find potential solution into how planets form

A star that devoured its own planets

Giant Exoplanet Hunters: Look for Debris Disks

Are Self-Replicating Starships Practical

IRON AND ICE
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.