. 24/7 Space News .
A Genetic Study Of The Galaxy

The Field around Baade's Window, with NGC 6528
by Staff Writers
Paris, France (ESA) Oct 10, 2006
Looking in detail at the composition of stars with ESO's VLT, astronomers are providing a fresh look at the history of our home galaxy, the Milky Way. They reveal that the central part of our Galaxy formed not only very quickly but also independently of the rest.

"For the first time, we have clearly established a 'genetic difference' between stars in the disc and the bulge of our Galaxy," said Manuela Zoccali, lead author of the paper presenting the results in the journal Astronomy and Astrophysics [1]. "We infer from this that the bulge must have formed more rapidly than the disc, probably in less than a billion years and when the Universe was still very young."

The Milky Way is a spiral galaxy, having pinwheel-shaped arms of gas, dust, and stars lying in a flattened disc, and extending directly out from a spherical nucleus of stars in the central region. The spherical nucleus is called a bulge, because it bulges out from the disc. While the disc of our Galaxy is made up of stars of all ages, the bulge contains old stars dating from the time the galaxy formed, more than 10 billion years ago. Thus, studying the bulge allows astronomers to know more about how our Galaxy formed.

To do this, an international team of astronomers [2] analysed in detail the chemical composition of 50 giant stars in four different areas of the sky towards the Galactic bulge. They made use of the FLAMES/UVES spectrograph on ESO's Very Large Telescope to obtain high- resolution spectra.

The chemical composition of stars carries the signature of the enrichment processes undergone by the interstellar matter up to the moment of their formation. It depends on the previous history of star formation and can thus be used to infer whether there is a 'genetic link' between different stellar groups. In particular, comparison between the abundance of oxygen and iron in stars is very illustrative.

Oxygen is predominantly produced in the explosion of massive, short-lived stars (so-called Type II supernovae), while iron instead originates mostly in Type Ia supernovae [3], which can take much longer to develop. Comparing oxygen with iron abundances therefore gives insight on the star birth rate in the Milky Way's past.

"The larger size and iron-content coverage of our sample allows us to draw much more robust conclusions than were possible until now," said Aurelie Lecureur, from the Paris-Meudon Observatory (France) and co- author of the paper.

The astronomers clearly established that, for a given iron content, stars in the bulge possess more oxygen than their disc counterparts. This highlights a systematic, hereditary difference between bulge and disc stars.

"In other words, bulge stars did not originate in the disc and then migrate inward to build up the bulge but rather formed independently of the disc," said Zoccali. "Moreover, the chemical enrichment of the bulge, and hence its formation timescale, has been faster than that of the disc."

Comparisons with theoretical models indicate that the Galactic bulge must have formed in less than a billion years, most likely through a series of starbursts when the Universe was still very young.

[1] "Oxygen abundances in the Galactic bulge: evidence for fast chemical enrichment" by Zoccali et al. It is freely available from the publisher's web site.

[2] The team is composed of Manuela Zoccali and Dante Minniti (Universidad Catolica de Chile, Santiago), Aurelie Lecureur, Vanessa Hill and Ana Gomez (Observatoire de Paris-Meudon, France), Beatriz Barbuy (Universidade de Sao Paulo, Brazil), Alvio Renzini (INAF- Osservatorio Astronomico di Padova, Italy), and Yazan Momany and Sergio Ortolani (Universita di Padova, Italy).

[3] Type Ia supernovae are a sub-class of supernovae that were historically classified as not showing the signature of hydrogen in their spectra. They are currently interpreted as the disruption of small, compact stars, called white dwarfs, that acquire matter from a companion star. A white dwarf represents the penultimate stage of a solar-type star. The nuclear reactor in its core has run out of fuel a long time ago and is now inactive.

However, at some point the mounting weight of the accumulating material will have increased the pressure inside the white dwarf so much that the nuclear ashes in there will ignite and start burning into even heavier elements. This process very quickly becomes uncontrolled and the entire star is blown to pieces in a dramatic event. An extremely hot fireball is seen that often outshines the host galaxy.

Related Links
ESO
Stellar Chemistry, The Universe And All Within It
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Astronomers See Inside A Quasar For The First Time
Columbus OH (SPX) Oct 09, 2006
For the first time, astronomers have looked inside quasars -- the brightest objects in the universe -- and have seen evidence of black holes. The study lends further confirmation to what scientists have long suspected -- that quasars are made up of super-massive black holes and the super-heated disks of material that are spiraling into them.







  • NASA Scientist Shares Nobel Prize for Physics
  • Space Foundation Comment On The National Space Policy
  • Urals Resort Picked As Post-Mission Recovery Base For Cosmonauts
  • NASA Administrator And Test Pilots Have Meeting Of The (Brilliant) Minds

  • Human Mars Missions Face Unsolved Technical Challenges
  • Opportunity Set To Clock Up Six Miles On Mars
  • NASA Spots Opportunity In Stunning MRO Image Of Victoria Crater
  • Galaxy Gardening More Than Hobby For Future Moon And Mars Residents

  • Metop To Be Launched On 17 October
  • United Launch Alliance Joint Rocket Venture Cleared by US FTC
  • FTC Intervenes In Formation Of ULA Joint Venture By Boeing And LM
  • RSC Energia Extraordinary Stockholders Meeting

  • NASA Satellite Data Helps Assess the Health of Florida's Coral Reef
  • Alcatel Alenia Space To Build SIRAL-2 Radar Altimeter For CryoSat-2
  • Earth from Space: The French Frigate Shoals
  • European Microsatellite Playing Major Role In Scientific Studies

  • New Horizons Spacecraft Snaps Approach Image of the Giant Planet
  • Does The Atmosphere Of Pluto Go Through The Fast-Freeze
  • Changing Seasons On The Road Trip To Planet Nine
  • Surprises From The Edge Of The Solar System

  • A Genetic Study Of The Galaxy
  • Astronomers See Inside A Quasar For The First Time
  • Exploding Stars Influence Climate Of Earth
  • ESA Planck Satellite Builds On Nobel-Prize-Winning Science

  • In Space Everyone Can Hear You Misspeak
  • NASA Seeks Undergrads To Experiment In Lunar And Zero Gravity
  • NASA Opens New Door To Exploration
  • Indian Moon Mission To Launch By Early 2008

  • Raytheon Awarded Further Jam-Resistant GPS Contract
  • Russia And India To Jointly Use Glonass Satellite System
  • GIOVE-A Laser Ranging Campaign Successful
  • Spirent Communications Selected By DLR To Provide Advanced Galileo Test

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement