. 24/7 Space News .
ENERGY TECH
Your gadget's next power supply? Your body
by Staff Writers
Buffalo NY (SPX) Feb 13, 2018

This is a prototype of the triboelectric nanogenerator. Image courtesy Nano Energy.

Searching for a power outlet may soon become a thing of the past. Instead, devices will receive electricity from a small metallic tab that, when attached to the body, is capable of generating electricity from bending a finger and other simple movements.

That's the idea behind a collaborative research project led by University at Buffalo and Institute of Semiconductors (IoP) at Chinese Academy of Science (CAS). The tab - a triboelectric nanogenerator - is described in a study published online Jan. 31 in the journal Nano Energy.

"No one likes being tethered to a power outlet or lugging around a portable charger. The human body is an abundant source of energy. We thought: 'Why not harness it to produce our own power?'" says lead author Qiaoqiang Gan, PhD, associate professor of electrical engineering in UB's School of Engineering and Applied Sciences.

Triboelectric charging occurs when certain materials become electrically charged after coming into contact with a different material. Most everyday static electricity is triboelectric.

Researchers have proposed numerous nanogenerators that utilize the triboelectric effect; however, most are difficult to manufacture (requiring complex lithography) or are not cost effective. The tab that the UB and CAS team are developing addresses both of those concerns.

It consists of two thin layers of gold, with polydimethylsiloxane (also called PDMS, a silicon-based polymer used in contact lenses, Silly Putty and other products) sandwiched in between.

Key to the device is that one layer of gold is stretched, causing it to crumple upon release and create what looks like a miniature mountain range. When that force is reapplied, for example from a finger bending, the motion leads to friction between the gold layers and PDMS.

"This causes electrons to flow back and forth between the gold layers. The more friction, the greater the amount of power is produced," says another lead author, Yun Xu, PhD, professor of IoP at CAS.

The study describes a small tab (1.5 centimeters long, by 1 centimeter wide). It delivered a maximum voltage of 124 volts, a maximum current of 10 microamps and a maximum power density of 0.22 millwatts per square centimeter. That's not enough to quickly charge a smartphone; however it lit 48 red LED lights simultaneously.

Co-authors of the study include Huamin Chen at IoP and CAS; and Nan Zhang, a PhD student at UB.

Because the tab is easily fabricated, Zhang is leading a team of UB undergraduates which is tasked with improving the tab's performance. The team plans to use larger pieces of gold, which when stretched and folded together are expected to deliver even more electricity.

Researchers are also working on developing a portable battery to store energy produced by the tab. They envision the system serving as a power source for various wearable and self-powered electronic devices.

Research paper


Related Links
University at Buffalo
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Round-the-clock power from smart bowties
Thuwal, Saudi Arabia (SPX) Feb 13, 2018
Most sunlight striking the Earth is absorbed by its surfaces, oceans and atmosphere. As a result of this warming, infrared radiation is emitted constantly all around us - estimated to be millions of Gigawatts per second. A KAUST team has now developed a device that can tap into this energy, as well as waste heat from industrial processes, by transforming quadrillionth-of-a-second wave signals into useful electricity. Unlike solar panels that are limited by daylight hours and weather conditions, in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
All-in-one service for the Space Station

NASA's Continued Focus on Returning U.S. Human Spaceflight Launches

NASA Acting Administrator's Statement on FY 2019 Budget Proposal

US wants to privatize International Space Station: report

ENERGY TECH
Russia launches cargo spacecraft after aborted liftoff

Soyuz launch to resupply ISS aborted seconds before liftoff

What's next for SpaceX?

Elon Musk, visionary Tesla and SpaceX founder

ENERGY TECH
Mars Opportunity Rover Energy Levels Improve

A Piece of Mars is Going Home

Danish architect envisions life on Mars

Leaky Atmosphere Linked To Lightweight Planet

ENERGY TECH
Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

China's first X-ray space telescope put into service after in-orbit tests

China's first successful lunar laser ranging accomplished

ENERGY TECH
Airbus and human spaceflight: from Spacelab to Orion

Iridium Announces First Land-Mobile Service Providers for Iridium Certus

2018 in Space - Progress and Promise

UK companies seek cooperation with Russia in space technologies

ENERGY TECH
Raytheon to upgrade radar systems in Hornet aircraft

Lockheed's 'Dragon Shield' for Finland achieves operational capability

Scientists can now 3D print nanoscale metal structures

Helping authorities respond more quickly to airborne radiological threats

ENERGY TECH
UChicago astrophysicists settle cosmic debate on magnetism of planets and stars

Viruses are falling from the sky

Are you rocky or are you gassy

What the TRAPPIST-1 Planets Could Look Like

ENERGY TECH
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.