Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



CARBON WORLDS
Wrinkles give heat a jolt in pillared graphene
by Staff Writers
Houston TX (SPX) Nov 06, 2017


Heat transport through pillared graphene could be made faster by manipulating the junctions between sheets of graphene and the nanotubes that connect them, according to Rice University researchers.

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University engineers.

Rice materials scientist Rouzbeh Shahsavari and alumnus Navid Sakhavand first built atom-level computer models of pillared graphene - sheets of graphene connected by covalently bonded carbon nanotubes - to discover their strength and electrical properties as well as their thermal conductivity.

In a new study, they found that manipulating the joints between the nanotubes and graphene has a significant impact on the material's ability to direct heat. That could be important as electronic devices shrink and require more sophisticated heat sinks.

The research appears in the American Chemical Society journal ACS Applied Materials and Interfaces.

Researchers who study or are working to make pillared graphene have primarily viewed two characteristics of the theoretical material: the length of the pillars and their distance from each other. The new study suggests that a third parameter - the nature of the junction between the graphene and nanotubes - should also be considered.

A seamless connection between flat graphene, the atom-thick form of carbon, and round nanotubes requires adjustments to their characteristic six-member carbon rings. The simplest way is to give half the rings at the junction an extra atom. Six seven-member rings alternating with six six-member rings allow the sheet to make a 90-degree turn to become the tube.

But that's not the optimal configuration for heat transport, according to the Rice team. It found that replacing six heptagons with three octagons would facilitate the turn while slightly stressing the graphene. That would wrinkle the graphene sheets' top and bottom while not significantly changing transport at the junctions.

The researchers intuitively expected the wrinkles to lower thermal transport and were surprised to find that thermal transport across the "in-plane" graphene became faster with wrinkles. They determined that having fewer rings in the junctions between nanotubes and graphene meant less scattering of heat-carrying phonons, which kept them onboard for the bumpy ride.

Measured along the longest plane, models with the octagons were nearly 20 percent better at transporting phonons than those without.

"Our results show that subtle features such as this junction configuration have a significant impact on thermal transport," said Shahsavari, an assistant professor of civil and environmental engineering and of materials science and nanoengineering.

"Given the current needs in thermal management and device miniaturization in many nano- and microelectronics, this study provides a new degree of freedom to play and improve thermal transport."

The researchers thought phonon transport through the nanotubes, which they already knew was slower than in graphene, might be slower still under the influence of the octagons, but the altered interface didn't appear to have a significant effect.

"The reason lies in the geometry," Shahsavari said. "The lower the number of non-hexagonal rings in the junction (for example three octagons versus six heptagons), the lower the number of undesirable rings and thus lower phonon scattering and improved thermal transport." Because the junctions can adopt many different geometries depending on the radius and chirality of the nanotube, there are many more potential configurations to be modeled, he said.

Research paper

CARBON WORLDS
Graphene enables high-speed electronics on flexible materials
Gothenburg, Sweden (SPX) Nov 03, 2017
Terahertz radiation has a wide range of uses and can occur in everything from radio astronomy to medicine. The term refers to the electromagnetic waves whose frequencies range from 100 gigahertz to 10 terahertz. Demand for higher bandwidth in wireless communications and depiction for security applications has led to intensified research on systems and components intended for terahertz frequencie ... read more

Related Links
Rice University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Mice, fish and flies: the animals still being sent into space

Dog star: Scientist recalls training Laika for space

The Noah's Ark of animals sent in to space

Orbital ATK's to deliver supplies to International Space Station

CARBON WORLDS
Launch your design with Cheops

NASA Selects Studies for Gateway Power and Propulsion Element

Arianespace to launch Embratel Star One D2

What Ever Happened to Sea Launch?

CARBON WORLDS
Martian Ridge Brings Out Rover's Color Talents

Insight will carry over two million names to Mars

Opportunity Does a Wheelie and is Back on Solid Footing

Next Mars Rover Will Have 23 'Eyes'

CARBON WORLDS
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

CARBON WORLDS
European Space Week starts in Estonia

New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

CARBON WORLDS
Liquids take a shine to terahertz radiation

Voltage-driven liquid metal fractals

Jellyfish-inspired electronic skin glows when it gets hurt

One-step 3-D printing of catalysts developed at Ames Laboratory

CARBON WORLDS
Evolutionary theory suggests aliens might not look all that alien

Atmospheric beacons guide NASA scientists in search for life

Overlooked Treasure: The First Evidence of Exoplanets

Scientists discover new type of deep-sea hunting called kleptopredation

CARBON WORLDS
Juno Aces 8th Science Pass of Jupiter, Names New Project Manager

Jupiter's X-ray auroras pulse independently

Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement