. | . |
Voltage-driven liquid metal fractals by Staff Writers Raleigh NC (SPX) Nov 02, 2017
Researchers from North Carolina State University have found that gallium indium (EGaIn), a liquid metal with one of the highest surface tensions, can be induced to spread and form patterns called fractals with the application of low voltage. The work has implications for controlling the shape of liquid metals. Surface tension is the force exerted by the surface of a liquid that causes it to "bead up" or form droplets. Water, for example, has a high surface tension, so it beads up, whereas alcohol, with a lower surface tension, tends to spread out. Liquid metals, such as mercury, have enormous surface tension and thus are almost always spherical. In fact, EGaIn has the highest surface tension of any known liquid at room temperature. In a surprising finding, NC State professor of physics Karen Daniels and professor of chemical and biomolecular engineering Michael Dickey discovered that applying low voltage to the surface of EGaIn causes the liquid metal to spread out and form snowflake-like fractal patterns. "Applying voltage to EGaIn forms a thin layer of oxide on the surface of the metal, which effectively lowers the surface tension," Dickey says. "Normally, the tension of liquids can be lowered by adding surfactants - like putting soap or detergent in water - to the liquid. It's easy to put soap into water, but hard to get the soap out. In contrast, the use of voltage to control the tension is interesting because it is reversible, and incredibly effective." "We also found that if you apply higher amounts of voltage to the metal it stops spreading and beads up again," Daniels says. "That's due to the amount of oxide produced - a small amount lowers the surface tension, but too much forms a crust over the metal and stops it spreading. So controlling the voltage is a nice way to control the spreading of the metal." The researchers recorded the metal's behavior as the surface tension lowered. Less than one volt of electricity caused the metal to spread out and form different fractals, or patterns. Interestingly, the fractals formed by the EGaIn appear to be unique; that is, they do not match any currently described fractals. "Aside from being unusual, the other implication of these fractals is that in order for them to form the surface tension of the liquid metal must be close to zero," Daniels says. "This work suggests that not only does the formation of the oxide lower the surface tension of the liquid metal, but that it also creates compressive stresses - the opposite of tension - that help the metal spread out and form fractals," Dickey says. "This is interesting because liquids are always under tension, and we now have a tool to apply compressive forces directly to the surface of a liquid. These properties give us greater control over the metal's behavior."
Research Report: "Oxidation-Mediated Fingering in Liquid Metals"
Warsaw, Poland (SPX) Oct 31, 2017 Seemingly, we already know everything there is to know about evaporation. However, we've had another surprise: it turns out that small drops are stragglers and they evaporate more slowly than their larger counterparts, according to physicists from the Warsaw Institutes of the Polish Academy of Sciences. This applies not only to water but also to other liquids: it turns out that very small ... read more Related Links North Carolina State University Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |